

1697

LC

2000

LC

Establecimiento: CAMPO ESPEJO

Punto: PM19

Sitio

N°Análisis

Matriz

Fecha Hora **Entrada** 

1465

LC

|                                  |              | liola      |
|----------------------------------|--------------|------------|
|                                  |              | Tipo Muest |
| Determinacion                    | Umedida      |            |
| рН                               | unidad de pH |            |
| Conductividad                    | μS/cm        |            |
| Sólidos sedimentables en 10 min. | ml/l         |            |
| Sólidos sedimentables en 2 hs    | ml/l         |            |
| Sólidos en suspensión totales    | mg/l         |            |
| Sólidos en suspensión fijos      | mg/l         |            |
| Sólidos en suspensión volátiles  | mg/l         |            |
| Alcalinidad                      | mg/l         |            |
| Sulfuros totales (S=)            | mg/l         |            |
| Nitrógeno amoniacal (N-NH3)      | mg/l         |            |
| Nitrógeno de Nitritos (N-NO2-)   | mg/l         |            |
| D.B.O. ( 5 días, 20℃)            | mg/l         |            |
| D.Q.O.                           | mg/l         |            |
| Plaguicidas y Herbicidas         | μg/l         |            |
| Sustancias Fenólicas             | mg/l         |            |
| Hidrocarburos                    | mg/l         |            |
| C.O.V.                           | μg/l         |            |
| Escherichia coli                 | NMP/100 ml   |            |
| Huevos de Helmintos              | Huevos /1000 | ı          |
| PLOMO                            | mg/l         |            |
| CADMIO                           | mg/l         |            |
| CROMO                            | mg/l         |            |
| ARSÉNICO                         | mg/l         |            |
|                                  |              |            |

mg/l

|     | 12-02-2016 | 17-02-2016                 | 24-02-2016 |
|-----|------------|----------------------------|------------|
|     | 12:50      | 10:25                      | 15:30      |
| tra | Р          | PE                         | Р          |
|     | Value      | Value                      | Malar      |
|     | 7.2        | 7.4                        | 7.2        |
|     | 1190       | 1180                       | 1210       |
|     |            | 2.5                        |            |
|     |            | 4.0                        |            |
|     |            | 121                        |            |
|     |            | 21                         |            |
|     |            | 100                        |            |
|     |            | 208                        |            |
|     |            | <0.2                       |            |
|     |            | 30.8                       |            |
|     |            | <0.01                      |            |
|     |            | 132                        |            |
|     | 317        | 219                        | 345        |
|     |            | <lm< td=""><td></td></lm<> |            |
|     |            | <0,05                      |            |
|     |            | <0,5                       |            |
|     |            | <lm< td=""><td></td></lm<> |            |
|     | 4.60E07    | 7.50E07                    | 2.40E07    |
|     |            | 20                         |            |
|     |            | <0.4                       |            |
|     |            | <0.01                      |            |
|     |            | <0.050                     |            |
|     |            | <0.050                     |            |
|     |            | <0.005                     |            |
|     |            |                            |            |

MERCURIO



1802

LC

<0.005

Establecimiento: CAMPO ESPEJO

Punto: PM20

Sitio

N°Análisis

Matriz

Fecha Hora Salida

1466

LC

|     |                                  |              | Tipo Muestr |
|-----|----------------------------------|--------------|-------------|
| kin | Determinacion                    | Umedida      |             |
| 50  | pН                               | unidad de pH |             |
| 31  | Conductividad                    | μS/cm        |             |
| 60  | Sólidos sedimentables en 10 min. | ml/l         |             |
| ×   | Sólidos sedimentables en 2 hs    | ml/l         |             |
| 80  | Sólidos en suspensión totales    | mg/l         |             |
| 93  | Sólidos en suspensión fijos      | mg/l         |             |
| 100 | Sólidos en suspensión volátiles  | mg/l         |             |
| 110 | Cloruros (CL-)                   | mg/l         |             |
| 130 | Alcalinidad                      | mg/l         |             |
| 140 | Dureza total                     | mg/l         |             |
| 160 | Dureza cálcica                   | mg/l         |             |
| 180 | Calcio (Ca++)                    | mg/l         |             |
| 200 | Magnesio (Mg++)                  | mg/l         |             |
| 220 | SODIO                            | mg/l         |             |
| 240 | POTASIO                          | mg/l         |             |
| 265 | R.A.S.                           | N°           |             |
| 270 | Sulfuros totales (S=)            | mg/l         |             |
| 300 | Nitrógeno amoniacal (N-NH3)      | mg/l         |             |
| 310 | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |             |
| 388 | D.B.O. ( 5 días, 20℃)            | mg/l         |             |
| 370 | D.Q.O.                           | mg/l         |             |
| 540 | Escherichia coli                 | NMP/100 ml   |             |
| 500 | Huevos de Helmintos              | Huevos /1000 | ı           |
| 570 | PLOMO                            | mg/l         |             |
| 500 | CADMIO                           | mg/l         |             |
| 500 | CROMO                            | mg/l         |             |
| 600 | ARSÉNICO                         | mg/l         |             |
|     | MERCURIO                         | mg/l         |             |

| 12-02-2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19-02-2016                | 22-02-2016                                                                                                                                      | 24-02-2016                                                                                                                                                             | 29-02-2016                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 13:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09:00                     | 11:30                                                                                                                                           | 15:10                                                                                                                                                                  | 13:55                                                                                                                                             |
| Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PE                        | Р                                                                                                                                               | Р                                                                                                                                                                      | Р                                                                                                                                                 |
| - Selection - Sele | Valor                     | Maker                                                                                                                                           | Males                                                                                                                                                                  | Malay                                                                                                                                             |
| 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.9                       | 8.1                                                                                                                                             | 8.2                                                                                                                                                                    | 7.8                                                                                                                                               |
| 1280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1350                      | 1330                                                                                                                                            | 1290                                                                                                                                                                   | 1420                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.1                      |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.1                      |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                        |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                         |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37                        |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130                       |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 236                       |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 381                       |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 297                       |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119                       |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                        |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109                       |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                        |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.43                      |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.2                      |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
| 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                         | 104                                                                                                                                             | 139                                                                                                                                                                    | 130                                                                                                                                               |
| <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 1.50E02                                                                                                                                         | 9.30E01                                                                                                                                                                | <2                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <1                        |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.4                      |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.01                     |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.050                    |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.050                    |                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13:25<br>P<br>8.0<br>1280 | 13:25 09:00 P PE  8.0 7.9 1280 1350 <0.1 <0.1 40 3 37 130 236 381 297 119 20 109 14 2.43 <0.2 19.0 0.01 <2 133 128 <2 <1 <0.4 <0.4 <0.01 <0.050 | 13:25 09:00 11:30 P PE P  8.0 7.9 8.1 1280 1350 1330  <0.1 <0.1 40 3 37 130 236 381 297 119 20 109 109 14 2.43 <0.2 19.0 0.01 <22 133 128 104 <2 <2 1.50E02 <11 <0.050 | 13:25     09:00     11:30     15:10       P     PE     P     P       8.0     7.9     8.1     8.2       1280     1350     1330     1290       <0.1 |

1842

LC

2001

LC

2155

LC



Determinacion

# DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

| Establecimiento: CAMPO ESPEJO | Punto: PM54 |
|-------------------------------|-------------|
|                               |             |
|                               |             |

Umedida

| Sitio        | Salida entre series 6 y 7 |            |            |  |  |
|--------------|---------------------------|------------|------------|--|--|
| N°Análisis   |                           |            |            |  |  |
| Matriz       | LC                        |            |            |  |  |
| Fecha        | 12-02-2016                | 19-02-2016 | 24-02-2016 |  |  |
| Hora         |                           |            |            |  |  |
| Tipo Muestra | Р                         | Р          | Р          |  |  |
| Tipo Muestra | P                         | P          | Р          |  |  |
|              |                           |            |            |  |  |
|              |                           |            |            |  |  |
|              |                           |            |            |  |  |



Establecimiento: CAMPO ESPEJO Punto: PM55

| Sitio Salida entre series 8 y 9 |            |            |            |            |       |        |
|---------------------------------|------------|------------|------------|------------|-------|--------|
| N°Análisis                      | 1168       | 1698       |            |            |       |        |
| Matriz                          | LC         | LC         | LC         |            |       |        |
| Fecha                           | 03-02-2016 | 17-02-2016 | 12-02-2016 | 19-02-2016 | 24-02 | 2-2016 |
| Hora                            | 11:25      | 09:55      |            |            |       |        |
| Tipo Muestra                    | Р          | PE         | Р          | Р          | DU    | Р      |
|                                 | Malan      | Miller     | 1000       | Market     | 1000  | Make   |

| orden | Determinacion                    | Umedida      |
|-------|----------------------------------|--------------|
| 10    | рН                               | unidad de pH |
| 31    | Conductividad                    | μS/cm        |
| 60    | Sólidos sedimentables en 10 min. | ml/l         |
| 70    | Sólidos sedimentables en 2 hs    | ml/l         |
| 80    | Sólidos en suspensión totales    | mg/l         |
| 93    | Sólidos en suspensión fijos      | mg/l         |
| 500   | Sólidos en suspensión volátiles  | mg/l         |
| 110   | Cloruros (CL-)                   | mg/l         |
| 130   | Alcalinidad                      | mg/l         |
| 540   | Dureza total                     | mg/l         |
| 160   | Dureza cálcica                   | mg/l         |
| 130   | Calcio (Ca++)                    | mg/l         |
| 200   | Magnesio (Mg++)                  | mg/l         |
| 220   | SODIO                            | mg/l         |
| 240   | POTASIO                          | mg/l         |
| 265   | R.A.S.                           | N°           |
| 270   | Sulfuros totales (S=)            | mg/l         |
|       | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 310   | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 366   | D.B.O. ( 5 días, 20℃)            | mg/l         |
| 370   | D.Q.O.                           | mg/l         |
| 534   | Plaguicidas y Herbicidas         | μg/l         |
| 536   | Sustancias Fenólicas             | mg/l         |
| 538   | Hidrocarburos                    | mg/l         |
| 535   | C.O.V.                           | μg/l         |
| 540   | Escherichia coli                 | NMP/100 ml   |
| 500   | Huevos de Helmintos              | Huevos /1000 |
| 570   | PLOMO                            | mg/l         |
| 500   | CADMIO                           | mg/l         |
| 500   | CROMO                            | mg/l         |
| 600   | ARSÉNICO                         | mg/l         |
| 636   | MERCURIO                         | mg/l         |
| 1000  |                                  |              |
|       |                                  |              |

| Make | Notes                                                 | No. | Make | 10-to- | Make |
|------|-------------------------------------------------------|-----|------|--------|------|
| -    |                                                       |     |      |        |      |
| 7.9  | 7.7                                                   |     |      |        |      |
| 1340 | 1480                                                  |     |      |        |      |
|      | <0.1                                                  |     |      |        |      |
|      | 0.2                                                   |     |      |        |      |
|      | 38                                                    |     |      |        |      |
|      | 3                                                     |     |      |        |      |
|      | 35                                                    |     |      |        |      |
|      | 171                                                   |     |      |        |      |
|      | 220                                                   |     |      |        |      |
|      | 381                                                   |     |      |        |      |
|      | 285                                                   |     |      |        |      |
|      | 114                                                   |     |      |        |      |
|      | 23                                                    |     |      |        |      |
|      | 130                                                   |     |      |        |      |
|      | 12                                                    |     |      |        |      |
|      | 2.9                                                   |     |      |        |      |
|      | <0.2                                                  |     |      |        |      |
|      | 11.2                                                  |     |      |        |      |
|      | 0.03                                                  |     |      |        |      |
|      | <2                                                    |     |      |        |      |
| 139  | 185                                                   |     |      |        |      |
|      | <lm< th=""><th></th><th></th><th></th><th></th></lm<> |     |      |        |      |
|      | <0,05                                                 |     |      |        |      |
|      | <0,5                                                  |     |      |        |      |
|      | <lm< th=""><th></th><th></th><th></th><th></th></lm<> |     |      |        |      |
|      | <2                                                    |     |      |        |      |
|      | <1                                                    |     |      |        |      |
|      | <0.4                                                  |     |      |        |      |
|      | <0.01                                                 |     |      |        |      |
|      | <0.050                                                |     |      |        |      |
|      | <0.050                                                |     |      |        |      |
|      | <0.005                                                |     |      |        |      |
|      |                                                       |     |      |        |      |
|      |                                                       |     |      |        |      |



**Establecimiento: COLONIA LAS ROSAS** 

Punto: PM21

| Sitio        | Entrada    |            |  |
|--------------|------------|------------|--|
| N°Análisis   | 1601       | 2024       |  |
| Matriz       | LC         | LC         |  |
| Fecha        | 16-02-2016 | 25-02-2016 |  |
| Hora         | 15:05      | 08:40      |  |
| Tipo Muestra | PE         | Р          |  |

| den | Determinacion                    | Umedida      |
|-----|----------------------------------|--------------|
| 50  | рН                               | unidad de pH |
| 31  | Conductividad                    | μS/cm        |
| 60  | Sólidos sedimentables en 10 min. | ml/l         |
| 70  | Sólidos sedimentables en 2 hs    | ml/l         |
| 80  | Sólidos en suspensión totales    | mg/l         |
|     | Sólidos en suspensión fijos      | mg/l         |
| 100 | Sólidos en suspensión volátiles  | mg/l         |
| 350 | D.B.O. ( 5 días, 20℃)            | mg/l         |
|     | D.Q.O.                           | mg/l         |
| 540 | Escherichia coli                 | NMP/100 ml   |
| 560 | Huevos de Helmintos              | Huevos /1000 |
| 570 | PLOMO                            | mg/l         |
|     | CADMIO                           | mg/l         |
| 590 | CROMO                            | mg/l         |
| 600 | ARSÉNICO                         | mg/l         |
| 620 | MERCURIO                         | mg/l         |

|         | Table 1 |
|---------|---------|
|         |         |
| 6.8     | 8.2     |
| 1330    | 1010    |
| 150     |         |
| 100     |         |
| 12400   |         |
| 4500    |         |
| 7900    |         |
| 4635    |         |
| 9500    | 362     |
| 1.10E07 | 9.30E07 |
| 22      |         |
| <0.4    |         |
| <0.01   |         |
| <0.050  |         |
| <0.050  |         |
| < 0.005 |         |



**Establecimiento: COSTA DE ARAUJO** 

Punto: PM16

| Sitio        | Entrada    |            |            |
|--------------|------------|------------|------------|
| N°Análisis   | 1467       | 1703       | 2002       |
| Matriz       | LC         | LC         | LC         |
| Fecha        | 12-02-2016 | 17-02-2016 | 24-02-2016 |
| Hora         | 11:15      | 13:45      | 13:15      |
| Tipo Muestra | Р          | PE         | Р          |
|              | Valor      | Valor      | Volor      |

| en . | Determinacion                    | Umedida      |  |  |  |  |
|------|----------------------------------|--------------|--|--|--|--|
| 10   | рН                               | unidad de pH |  |  |  |  |
| 31   | Conductividad                    | μS/cm        |  |  |  |  |
| 60   | Sólidos sedimentables en 10 min. | ml/l         |  |  |  |  |
| 70   | Sólidos sedimentables en 2 hs    | ml/l         |  |  |  |  |
| 80   | Sólidos en suspensión totales    | mg/l         |  |  |  |  |
| 90   | Sólidos en suspensión fijos      | mg/l         |  |  |  |  |
| 100  | Sólidos en suspensión volátiles  | mg/l         |  |  |  |  |
| 130  | Alcalinidad                      | mg/l         |  |  |  |  |
| 270  | Sulfuros totales (S=)            | mg/l         |  |  |  |  |
| 300  | Nitrógeno amoniacal (N-NH3)      | mg/l         |  |  |  |  |
| 310  | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |  |  |  |  |
| 360  | D.B.O. ( 5 días, 20℃)            | mg/l         |  |  |  |  |
| 370  | D.Q.O.                           | mg/l         |  |  |  |  |
| 540  | Escherichia coli                 | NMP/100 ml   |  |  |  |  |
| 560  | Huevos de Helmintos              | Huevos /1000 |  |  |  |  |
| 570  | PLOMO                            | mg/l         |  |  |  |  |
| 580  | CADMIO                           | mg/l         |  |  |  |  |
| 590  | CROMO                            | mg/l         |  |  |  |  |
| 600  | ARSÉNICO                         | mg/l         |  |  |  |  |
| 620  | MERCURIO                         | mg/l         |  |  |  |  |
|      |                                  |              |  |  |  |  |

| 6.6     | 7.4     | 7.7     |
|---------|---------|---------|
| 1160    | 1580    | 1530    |
|         | 1.0     |         |
|         | 1.5     |         |
|         | 63      |         |
|         | 17      |         |
|         | 46      |         |
|         | 512     |         |
|         | <0.2    |         |
|         | 54.3    |         |
|         | <0.01   |         |
|         | 179     |         |
| 236     | 315     | 267     |
| 2.10E07 | 9.30E07 | 7.50E07 |
|         | 29      |         |
|         | <0.4    |         |
|         | <0.01   |         |
|         | <0.050  |         |
|         | <0.050  |         |
|         | <0.005  |         |



1468

1704

1803

1843

2003

2004

**Establecimiento: COSTA DE ARAUJO** 

Punto: PM17

N°Análisis

Sitio

Salida

1170

|     |                                  |              | IN Allalisis | 1170       | 1700       | 1704             | 1003       | 1043       | 2003       | 2004       |
|-----|----------------------------------|--------------|--------------|------------|------------|------------------|------------|------------|------------|------------|
|     |                                  |              | Matriz       | LC         | LC         | LC               | LC         | LC         | LC         | LC         |
|     |                                  |              | Fecha        | 03-02-2016 | 12-02-2016 | 17-02-2016       | 19-02-2016 | 22-02-2016 | 24-02-2016 | 24-02-2016 |
|     |                                  |              | Hora         | 09:40      | 11:20      | 14:00            | 11:05      | 09:15      | 13:30      | 13:30      |
|     |                                  |              | Tipo Muestra | Р          | Р          | PE               | Р          | Р          | Р          | DU         |
| den | Determinacion                    | Umedida      |              | Velor      | Volter     | Voles            | Molec      | Notes      | Maker      | Valor      |
| 10  | рН                               | unidad de pH |              | 8.0        | 8.2        | 8.0              | 7.8        | 8.3        | 8.5        |            |
| 31  | Conductividad                    | μS/cm        |              | 1490       | 1330       | 1730             | 1490       | 1670       | 1500       |            |
| 60  | Sólidos sedimentables en 10 min. | ml/l         |              |            |            | <0.1             |            |            |            |            |
| 70  | Sólidos sedimentables en 2 hs    | ml/l         |              |            |            | <0.1             |            |            |            |            |
| 80  | Sólidos en suspensión totales    | mg/l         |              |            |            | 37               |            |            |            |            |
| 90  | Sólidos en suspensión fijos      | mg/l         |              |            |            | 3                |            |            |            |            |
| 100 | Sólidos en suspensión volátiles  | mg/l         |              |            |            | 34               |            |            |            |            |
| 110 | Cloruros (CL-)                   | mg/l         |              |            |            | 236              |            |            |            |            |
| 130 | Alcalinidad                      | mg/l         |              |            |            | 312              |            |            |            |            |
| 140 | Dureza total                     | mg/l         |              |            |            | 281              |            |            |            |            |
| 150 | Dureza cálcica                   | mg/l         |              |            |            | 213              |            |            |            |            |
| 180 | Calcio (Ca++)                    | mg/l         |              |            |            | 85               |            |            |            |            |
| 200 | Magnesio (Mg++)                  | mg/l         |              |            |            | 17               |            |            |            |            |
| 220 | SODIO                            | mg/l         |              |            |            | 167              |            |            |            |            |
| 240 | POTASIO                          | mg/l         |              |            |            | 22               |            |            |            |            |
| 265 | R.A.S.                           | N°           |              |            |            | 4.33             |            |            |            |            |
| 270 | Sulfuros totales (S=)            | mg/l         |              |            |            | <0.2             |            |            |            |            |
| 300 | Nitrógeno amoniacal (N-NH3)      | mg/l         |              |            |            | 19.6             |            |            |            |            |
| 310 | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              |            |            | interfert. cloro |            |            |            |            |
| 350 | D.B.O. ( 5 días, 20℃)            | mg/l         |              |            |            | <2               |            |            |            |            |
| 370 | D.Q.O.                           | mg/l         |              | 289        | 247        | 287              | 244        | 280        | 174        |            |
| 540 | Escherichia coli                 | NMP/100 ml   |              |            | 1.10E05    | <2               | 4.60E02    | <2         | <2         | <2         |
| 560 | Huevos de Helmintos              | Huevos /1000 |              |            |            | <1               |            |            |            |            |
| 570 | PLOMO                            | mg/l         |              |            |            | <0.4             |            |            |            |            |
| 580 | CADMIO                           | mg/l         |              |            |            | <0.01            |            |            |            |            |
| 500 | CROMO                            | mg/l         |              |            |            | <0.050           |            |            |            |            |
| 800 | ARSÉNICO                         | mg/l         |              |            |            | <0.050           |            |            |            |            |
| 620 | MERCURIO                         | mg/l         |              |            |            | <0.005           |            |            |            |            |
|     |                                  |              |              |            |            |                  |            |            |            |            |



| Establecimiento: COSTA DE ARAUJO | Punto: PM17 |
|----------------------------------|-------------|
|                                  | _           |

| Sitio        |            |
|--------------|------------|
| N°Análisis   | 2156       |
| Matriz       | LC         |
| Fecha        | 29-02-2016 |
| Hora         | 11:45      |
| Tipo Muestra | Р          |
| ]            | Valor      |

| orden | Determinacion                    | Umedida      |
|-------|----------------------------------|--------------|
| 10    | рН                               | unidad de pH |
| 31    | Conductividad                    | μS/cm        |
| 60    | Sólidos sedimentables en 10 min. | ml/l         |
|       | Sólidos sedimentables en 2 hs    | ml/l         |
|       | Sólidos en suspensión totales    | mg/l         |
| 90    | Sólidos en suspensión fijos      | mg/l         |
| 100   | Sólidos en suspensión volátiles  | mg/l         |
| 110   | Cloruros (CL-)                   | mg/l         |
| 130   | Alcalinidad                      | mg/l         |
| 140   | Dureza total                     | mg/l         |
| 150   | Dureza cálcica                   | mg/l         |
|       | Calcio (Ca++)                    | mg/l         |
| 200   | Magnesio (Mg++)                  | mg/l         |
| 220   | SODIO                            | mg/l         |
| 240   | POTASIO                          | mg/l         |
| 265   | R.A.S.                           | N°           |
| 270   | Sulfuros totales (S=)            | mg/l         |
| 300   | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 310   | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 360   | D.B.O. ( 5 días, 20℃)            | mg/l         |
| 370   | D.Q.O.                           | mg/l         |
| 540   | Escherichia coli                 | NMP/100 ml   |
| 560   | Huevos de Helmintos              | Huevos /1000 |
| 570   | PLOMO                            | mg/l         |
| 580   | CADMIO                           | mg/l         |
| 500   | CROMO                            | mg/l         |
| 600   | ARSÉNICO                         | mg/l         |
| 620   | MERCURIO                         | mg/l         |
|       |                                  |              |

|   | 8.2<br>1660 |
|---|-------------|
| Ī | 1660        |
| Ī |             |
| Ī |             |
| Ì |             |
| Ī |             |
| İ |             |
| Ì |             |
| ı |             |
| Ī |             |
| İ |             |
| Ì |             |
| t |             |
| Ī |             |
| İ |             |
| Ì |             |
| Ī |             |
| Ī |             |
| Ī |             |
| Ī |             |
| Ī | 269         |
| Ī | <2          |
| Ī |             |
|   |             |
|   |             |
|   |             |
|   |             |
|   |             |



Establecimiento: EL PARAMILLO Punto: EP AC

| Sitio        | Salida can | npo este ar |  |
|--------------|------------|-------------|--|
| N°Análisis   | 1708       | 2012        |  |
| Matriz       | LC         | LC          |  |
| Fecha        | 17-02-2016 | 24-02-2016  |  |
| Hora         | 12:15      | 11:40       |  |
| Tipo Muestra | Р          | Р           |  |
|              | Value      | Valor       |  |

| Sen | Determinacion    | Umedida      |
|-----|------------------|--------------|
| 50  | рН               | unidad de pH |
|     | Conductividad    | μS/cm        |
| 370 | D.Q.O.           | mg/l         |
| 540 | Escherichia coli | NMP/100 ml   |

| 7.1     | 7.9     |
|---------|---------|
| 1470    | 1640    |
| 181     | 210     |
| 1.50E03 | 2.10E03 |



1705

LC

2010

LC

**Establecimiento: EL PARAMILLO** 

Punto: PM12

Sitio

N°Análisis

Matriz

Fecha Hora **Entrada** 

1469

LC

|                                  |              | Tiola       |
|----------------------------------|--------------|-------------|
|                                  |              | Tipo Muestr |
| Determinacion                    | Umedida      |             |
| рН                               | unidad de pH |             |
| Conductividad                    | μS/cm        |             |
| Sólidos sedimentables en 10 min. | ml/l         |             |
| Sólidos sedimentables en 2 hs    | ml/l         |             |
| Sólidos en suspensión totales    | mg/l         |             |
| Sólidos en suspensión fijos      | mg/l         |             |
| Sólidos en suspensión volátiles  | mg/l         |             |
| Sulfatos (SO4=)                  | mg/l         |             |
| Alcalinidad                      | mg/l         |             |
| Sulfuros totales (S=)            | mg/l         |             |
| Nitrógeno amoniacal (N-NH3)      | mg/l         |             |
| Nitrógeno de Nitritos (N-NO2-)   | mg/l         |             |
| D.B.O. ( 5 días, 20℃)            | mg/l         |             |
| D.Q.O.                           | mg/l         |             |
| Plaguicidas y Herbicidas         | μg/l         |             |
| Sustancias Fenólicas             | mg/l         |             |
| Hidrocarburos                    | mg/l         |             |
| C.O.V.                           | μg/l         |             |
| Escherichia coli                 | NMP/100 ml   |             |
| Huevos de Helmintos              | Huevos /1000 | 1           |
| PLOMO                            | mg/l         |             |
| CADMIO                           | mg/l         |             |
| CROMO                            | mg/l         |             |

mg/l

mg/l

|     | 12-02-2016 | 17-02-2016 | 24-02-2016        |
|-----|------------|------------|-------------------|
|     | 09:15      | 12:35      | 10:35             |
| tra | Р          | Р          | PE                |
|     | Value      | Males      | Malar             |
| - 1 | 7.0        | 7.1        | 7.0               |
|     | 1450       | 1470       | 1650              |
|     |            |            | 1.3               |
|     |            |            | 2.0               |
|     |            |            | 107               |
|     |            |            | 21                |
|     |            |            | 86                |
|     |            |            | 360               |
|     |            |            | 280               |
|     |            |            | 1.5               |
|     |            |            | 16.8              |
|     |            |            | <0.01             |
|     |            |            | 194               |
|     | 240        | 181        | 385               |
|     |            |            | <lm< td=""></lm<> |
|     |            |            | <0,05             |
|     |            |            | <0,5              |
|     |            |            | <lm< td=""></lm<> |
|     | 9.30E07    | 1.10E07    | 9.30E07           |
|     |            |            | 21                |
|     |            |            | <0.4              |
|     |            |            | <0.01             |
|     |            |            | <0.050            |
|     |            |            | <0.050            |
|     |            |            | <0.005            |

ARSÉNICO

MERCURIO

2157

LC

29-02-2016 03-02-2016



#### DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

Salida campo este

12-02-2016 12-02-2016

1471

LC

1706

LC

17-02-2016

1707

LC

2011

LC

17-02-2016 24-02-2016

1470

LC

**Establecimiento: EL PARAMILLO** 

Punto: PM13

Sitio

N°Análisis

Matriz

Fecha Hora Tipo Muestra

| ien | Determinacion                    | Umedida      |
|-----|----------------------------------|--------------|
| 51  | pH                               | unidad de pH |
| 3   | Conductividad                    | μS/cm        |
| 0   | Sólidos sedimentables en 10 min. | ml/l         |
| 7   | Sólidos sedimentables en 2 hs    | ml/l         |
| 5   | Sólidos en suspensión totales    | mg/l         |
| 9   | Sólidos en suspensión fijos      | mg/l         |
| 500 | Sólidos en suspensión volátiles  | mg/l         |
|     | Cloruros (CL-)                   | mg/l         |
|     | Sulfatos (SO4=)                  | mg/l         |
| 138 | Alcalinidad                      | mg/l         |
| 540 | Dureza total                     | mg/l         |
|     | Dureza cálcica                   | mg/l         |
|     | Calcio (Ca++)                    | mg/l         |
| 200 | Magnesio (Mg++)                  | mg/l         |
| 221 | SODIO                            | mg/l         |
| 240 | POTASIO                          | mg/l         |
|     | R.A.S.                           | N°           |
| 271 | Sulfuros totales (S=)            | mg/l         |
| 300 | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 311 | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 368 | D.B.O. ( 5 días, 20℃)            | mg/l         |
| 371 | D.Q.O.                           | mg/l         |
| 534 | Plaguicidas y Herbicidas         | μg/l         |
| 538 | Sustancias Fenólicas             | mg/l         |
| 533 | Hidrocarburos                    | mg/l         |
| 538 | C.O.V.                           | μg/l         |
| 541 | Escherichia coli                 | NMP/100 ml   |
| 503 | Huevos de Helmintos              | Huevos /1000 |
| 571 | PLOMO                            | mg/l         |
| 533 | CADMIO                           | mg/l         |
| 500 | CROMO                            | mg/l         |
| 600 | ARSÉNICO                         | mg/l         |
|     | MERCURIO                         | mg/l         |
|     |                                  |              |

| 08:45   | 08:45   | 11:35   | 11:35   | 12:10                               | 10:25   |       |
|---------|---------|---------|---------|-------------------------------------|---------|-------|
| Р       | DU      | Р       | DU      | PE                                  | Р       | Р     |
| Voles   | Volce   | Valor   | Make    | Valor                               | Valor   | Valor |
| 7.9     |         | 7.7     |         | 7.9                                 | 8.1     |       |
| 1620    |         | 1650    |         | 1600                                | 1620    |       |
|         |         |         |         | 1.0                                 |         |       |
|         |         |         |         | 1.0                                 |         |       |
|         |         |         |         | 73                                  |         |       |
|         |         |         |         | 13                                  |         |       |
|         |         |         |         | 60                                  |         |       |
|         |         |         |         | 164                                 |         |       |
|         |         |         |         | 330                                 |         |       |
|         |         |         |         | 288                                 |         |       |
|         |         |         |         | 502                                 |         |       |
|         |         |         |         | 401                                 |         |       |
|         |         |         |         | 161                                 |         |       |
|         |         |         |         | 24                                  |         |       |
|         |         |         |         | 130                                 |         |       |
|         |         |         |         | 21                                  |         |       |
|         |         |         |         | 2.53                                |         |       |
|         |         |         |         | <0.2                                |         |       |
|         |         |         |         | 16.2                                |         |       |
|         |         |         |         | <0.01                               |         |       |
|         |         |         |         | 40                                  |         |       |
| 128     |         | 153     |         | 154                                 | 157     |       |
|         |         |         |         | <lm< td=""><td></td><td></td></lm<> |         |       |
|         |         |         |         | <0,05                               |         |       |
|         |         |         |         | <0,5                                |         |       |
|         |         |         |         | <lm< td=""><td></td><td></td></lm<> |         |       |
| 7.50E02 | 9.30E02 | 4.60E02 | 3.50E02 | 4.60E02                             | 4.60E02 |       |
|         |         |         |         | <1                                  |         |       |
|         |         |         |         | <0.4                                |         |       |
|         |         |         |         | <0.01                               |         |       |
|         |         |         |         | <0.050                              |         |       |
|         |         |         |         | <0.050                              |         |       |
|         |         |         |         | <0.005                              |         |       |
|         |         |         |         |                                     |         |       |



Establecimiento: EL PARAMILLO Punto: PM13

|                                  |              | Sitio        |            |            |
|----------------------------------|--------------|--------------|------------|------------|
|                                  |              | N°Análisis   |            |            |
|                                  |              | Matriz       | LC         |            |
|                                  |              | Fecha        | 19-02-2016 | 22-02-2016 |
|                                  |              | Hora         |            |            |
|                                  |              | Tipo Muestra | Р          | Р          |
| Determinacion                    | Umedida      |              | Voles      | Valor      |
| pH                               | unidad de pH |              |            |            |
| Conductividad                    | μS/cm        |              |            |            |
| Sólidos sedimentables en 10 min. | ml/l         |              |            |            |
| Sólidos sedimentables en 2 hs    | ml/l         |              |            |            |
| Sólidos en suspensión totales    | mg/l         |              |            |            |
| Sólidos en suspensión fijos      | mg/l         |              |            |            |
| Sólidos en suspensión volátiles  | mg/l         |              |            |            |
| Cloruros (CL-)                   | mg/l         |              |            |            |
| Sulfatos (SO4=)                  | mg/l         |              |            |            |
| Alcalinidad                      | mg/l         |              |            |            |
| Dureza total                     | mg/l         |              |            |            |
| Dureza cálcica                   | mg/l         |              |            |            |
| Calcio (Ca++)                    | mg/l         |              |            |            |
| Magnesio (Mg++)                  | mg/l         |              |            |            |
| SODIO                            | mg/l         |              |            |            |
| POTASIO                          | mg/l         |              |            |            |
| R.A.S.                           | N°           |              |            |            |
| Sulfuros totales (S=)            | mg/l         |              |            |            |
| Nitrógeno amoniacal (N-NH3)      | mg/l         |              |            |            |
| Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              |            |            |
| D.B.O. ( 5 días, 20℃)            | mg/l         |              |            |            |
| D.Q.O.                           | mg/l         |              |            |            |
| Plaguicidas y Herbicidas         | μg/l         |              |            |            |
| Sustancias Fenólicas             | mg/l         |              |            |            |
| Hidrocarburos                    | mg/l         |              |            |            |
| C.O.V.                           | μg/l         |              |            |            |
| Escherichia coli                 | NMP/100 ml   |              |            |            |
| Huevos de Helmintos              | Huevos /1000 |              |            |            |
| PLOMO                            | mg/l         |              |            |            |
|                                  |              |              |            |            |

mg/l

mg/l

mg/l

mg/l

CADMIO

CROMO

ARSÉNICO

MERCURIO

LC

29-02-2016 03-02-2016 12-02-2016 19-02-2016



## DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

2013

LC

Salida campo norte

1710

LC

1709

LC

**Establecimiento: EL PARAMILLO** 

Punto: PM14

Sitio

N°Análisis

Matriz

|       |                                  |              | Manz         | LC         | LC         | LC         |   |
|-------|----------------------------------|--------------|--------------|------------|------------|------------|---|
|       |                                  |              | Fecha        | 17-02-2016 | 17-02-2016 | 24-02-2016 |   |
|       |                                  |              | Hora         | 12:50      | 12:50      | 11:30      |   |
|       |                                  |              | Tipo Muestra | Р          | DU         | PE         |   |
| Orden | Determinacion                    | Umedida      | JI           | Video      | Maler      | Valor      |   |
| 10    | рН                               | unidad de pH |              | 7.7        |            | 8.9        | Γ |
| 31    | Conductividad                    | μS/cm        |              | 1650       |            | 1570       | Г |
| 60    | Sólidos sedimentables en 10 min. | ml/l         |              |            |            | <0.1       |   |
| 70    | Sólidos sedimentables en 2 hs    | ml/l         |              |            |            | <0.1       |   |
| 80    | Sólidos en suspensión totales    | mg/l         |              |            |            | 167        |   |
| 90    | Sólidos en suspensión fijos      | mg/l         |              |            |            | 33         |   |
| 500   | Sólidos en suspensión volátiles  | mg/l         |              |            |            | 134        |   |
| 110   | Cloruros (CL-)                   | mg/l         |              |            |            | 181        |   |
| 120   | Sulfatos (SO4=)                  | mg/l         |              |            |            | 380        |   |
| 130   | Alcalinidad                      | mg/l         |              |            |            | 108        |   |
| 540   | Dureza total                     | mg/l         |              |            |            | 470        |   |
| 150   | Dureza cálcica                   | mg/l         |              |            |            | 333        |   |
| 180   | Calcio (Ca++)                    | mg/l         |              |            |            | 133        |   |
| 200   | Magnesio (Mg++)                  | mg/l         |              |            |            | 33         |   |
| 270   | Sulfuros totales (S=)            | mg/l         |              |            |            | <0.2       |   |
| 300   | Nitrógeno amoniacal (N-NH3)      | mg/l         |              |            |            | 2.8        |   |
| 310   | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              |            |            | <0.01      |   |
| 360   | D.B.O. ( 5 días, 20℃)            | mg/l         |              |            |            | 57         |   |
| 370   | D.Q.O.                           | mg/l         |              | 153        |            | 241        |   |
| 540   | Escherichia coli                 | NMP/100 ml   |              | 4.60E02    | 4.30E02    | <2         | Ĺ |
| 550   | Huevos de Helmintos              | Huevos /1000 |              |            |            | <1         | Ĺ |
| 1000  |                                  |              |              |            |            |            | Ĺ |
|       |                                  |              |              |            |            |            |   |

|   | •       |                                       |       |         | ·     |       | •     |
|---|---------|---------------------------------------|-------|---------|-------|-------|-------|
| - | itor    | Vision                                | Valor | Make    | Valor | Valor | Valor |
| Γ | 7.7     |                                       | 8.9   | 9.0     |       |       |       |
| Г | 1650    |                                       | 1570  | 1570    |       |       |       |
| Г |         |                                       | <0.1  |         |       |       |       |
| Г |         |                                       | <0.1  |         |       |       |       |
| Γ |         |                                       | 167   |         |       |       |       |
| Γ |         |                                       | 33    |         |       |       |       |
| Γ |         |                                       | 134   |         |       |       |       |
| Γ |         |                                       | 181   |         |       |       |       |
| Γ |         |                                       | 380   |         |       |       |       |
| Г |         |                                       | 108   |         |       |       |       |
| Г |         |                                       | 470   |         |       |       |       |
| Γ |         |                                       | 333   |         |       |       |       |
| Г |         |                                       | 133   |         |       |       |       |
| Г |         |                                       | 33    |         |       |       |       |
| Г |         |                                       | <0.2  |         |       |       |       |
| Г |         |                                       | 2.8   |         |       |       |       |
| Г |         |                                       | <0.01 |         |       |       |       |
| Г |         |                                       | 57    |         |       |       |       |
| Г | 153     |                                       | 241   | 253     |       |       |       |
| Г | 4.60E02 | 4.30E02                               | <2    | 9.30E01 |       |       |       |
| Ĺ |         |                                       | <1    |         |       |       |       |
| Ĺ |         |                                       |       |         |       |       |       |
| П |         | · · · · · · · · · · · · · · · · · · · |       |         | 1     |       | 1     |

2158

LC

09:40



Establecimiento: EL PARAMILLO Punto: PM14

|      |                                  |              | Sitio        |            |
|------|----------------------------------|--------------|--------------|------------|
|      |                                  |              | N°Análisis   |            |
|      |                                  |              | Matriz       |            |
|      |                                  |              | Fecha        | 22-02-2016 |
|      |                                  |              | Hora         |            |
|      |                                  |              | Tipo Muestra | Р          |
| ien  | Determinacion                    | Umedida      |              | Vilor      |
| 11   | pH                               | unidad de pH |              |            |
| 3    | Conductividad                    | μS/cm        |              |            |
| 0    | Sólidos sedimentables en 10 min. | ml/l         |              |            |
| 71   | Sólidos sedimentables en 2 hs    | ml/l         |              |            |
| 8    | Sólidos en suspensión totales    | mg/l         |              |            |
| 9    | Sólidos en suspensión fijos      | mg/l         |              |            |
| 500  | Sólidos en suspensión volátiles  | mg/l         |              |            |
|      | Cloruros (CL-)                   | mg/l         |              |            |
| 121  | Sulfatos (SO4=)                  | mg/l         |              |            |
| 130  | Alcalinidad                      | mg/l         |              |            |
| 540  | Dureza total                     | mg/l         |              |            |
|      | Dureza cálcica                   | mg/l         |              |            |
|      | Calcio (Ca++)                    | mg/l         |              |            |
| 200  | Magnesio (Mg++)                  | mg/l         |              |            |
| 271  | Sulfuros totales (S=)            | mg/l         |              |            |
| 300  | Nitrógeno amoniacal (N-NH3)      | mg/l         |              |            |
| 311  | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              |            |
| 300  | D.B.O. ( 5 días, 20℃)            | mg/l         |              |            |
| 371  | D.Q.O.                           | mg/l         |              |            |
| 541  | Escherichia coli                 | NMP/100 ml   |              |            |
| 503  | Huevos de Helmintos              | Huevos /1000 |              |            |
| 1000 |                                  |              |              |            |
|      |                                  |              |              |            |



#### **DEPARTAMENTO LABORATORIO** INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

Punto: PM47 **Establecimiento: EL PARAMILLO** 

|                  |              | Sitio        | Salida can | npo sur    |            |       |         |            |            |
|------------------|--------------|--------------|------------|------------|------------|-------|---------|------------|------------|
|                  |              | N°Análisis   | 1711       | 1712       | 2159       |       |         |            |            |
|                  |              | Matriz       | LC         | LC         | LC         |       |         | L          | С          |
|                  |              | Fecha        | 17-02-2016 | 17-02-2016 | 29-02-2016 | 03-02 | 2-2016  | 12-02-2016 | 19-02-2016 |
|                  |              | Hora         | 11:55      | 11:55      | 10:05      |       |         |            |            |
|                  |              | Tipo Muestra | Р          | DU         | Р          | DU    | Р       | Р          | Р          |
| Determinacion    | Umedida      |              | Video      | Vidor      | Valor      | Valor | Visitor | Valor      | Visitor    |
| рН               | unidad de pH |              | 8.2        |            | 9.0        |       |         |            |            |
| Conductividad    | μS/cm        |              | 1550       |            | 1410       |       |         |            |            |
| D.Q.O.           | mg/l         |              | 175        |            | 199        |       |         |            |            |
| Escherichia coli | NMP/100 ml   |              | 9.30E02    | 7.50E02    | 1.10E02    |       |         |            |            |
| 100              |              |              |            |            |            |       |         |            |            |
|                  |              |              |            |            |            |       |         |            |            |



| Establecimiento: EL PARAMILLO Punto: |                  |        |         | PM47      |      |            |            |
|--------------------------------------|------------------|--------|---------|-----------|------|------------|------------|
|                                      |                  |        |         | Sitio     |      |            |            |
|                                      |                  |        |         | N°Anális  | is   |            |            |
|                                      |                  |        |         | Matriz    |      |            |            |
|                                      |                  |        |         | Fecha     |      | 22-02-2016 | 24-02-2016 |
|                                      |                  |        |         | Hora      |      |            |            |
|                                      |                  |        |         | Tipo Mues | stra | Р          | PE         |
| Orden                                | Determinacion    | Umedia | da      | J         |      | Votes      | Volce      |
| 1                                    | рН               | unida  | d de pH |           |      |            |            |
| 3                                    | Conductividad    | μS/cn  | n       |           |      |            |            |
| 37                                   | D.Q.O.           | mg/l   |         |           |      |            |            |
| 54                                   | Escherichia coli | NMP/   | 100 ml  |           |      |            |            |
| 100                                  |                  |        |         |           |      |            |            |
|                                      |                  |        |         |           |      |            |            |



Establecimiento: GRAL. ALVEAR (LAGUNAS)

Punto: PM50

|   | Sitio        | Entrada    |            |            |            |
|---|--------------|------------|------------|------------|------------|
|   | N°Análisis   | 1166       | 1405       | 1650       | 2077       |
|   | Matriz       | LC         | LC         | LC         | LC         |
|   | Fecha        | 02-02-2016 | 10-02-2016 | 16-02-2016 | 25-02-2016 |
|   | Hora         | 10:40      | 10:00      | 10:35      | 08:30      |
|   | Tipo Muestra | Р          | Р          | Р          | PE         |
|   |              | Violen     | Visitor    | Volo       | Volor      |
| Н |              | 7.5        | 7.3        | 7.2        | 7.5        |
|   |              | 2160       | 2150       | 2220       | 2210       |
|   |              |            |            |            | 1.0        |
|   |              |            |            |            | 40         |

| ion | Determinacion                    | Umedida      |
|-----|----------------------------------|--------------|
| 50  | рН                               | unidad de pH |
| 31  | Conductividad                    | μS/cm        |
| 60  | Sólidos sedimentables en 10 min. | ml/l         |
| 80  | Sólidos en suspensión totales    | mg/l         |
| 90  | Sólidos en suspensión fijos      | mg/l         |
| 100 | Sólidos en suspensión volátiles  | mg/l         |
| 130 | Alcalinidad                      | mg/l         |
| 270 | Sulfuros totales (S=)            | mg/l         |
| 300 | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 310 | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 360 | D.B.O. ( 5 días, 20℃)            | mg/l         |
| 370 | D.Q.O.                           | mg/l         |
| 540 | Escherichia coli                 | NMP/100 ml   |
| 550 | Huevos de Helmintos              | Huevos /1000 |
| 570 | PLOMO                            | mg/l         |
| 580 | CADMIO                           | mg/l         |
| 590 | CROMO                            | mg/l         |
| 600 | ARSÉNICO                         | mg/l         |
| 620 | MERCURIO                         | mg/l         |
|     |                                  |              |

|      | Valor   | Video   | Vider   |
|------|---------|---------|---------|
|      |         |         |         |
| 7.5  | 7.3     | 7.2     | 7.5     |
| 2160 | 2150    | 2220    | 2210    |
|      |         |         | 1.0     |
|      |         |         | 40      |
|      |         |         | 7       |
|      |         |         | 33      |
|      |         |         | 336     |
|      |         |         | 18.4    |
|      |         |         | 33.6    |
|      |         |         | <0.01   |
|      |         |         | 92      |
| 215  | 154     | 193     | 188     |
|      | 1.10E07 | 2.10E07 | 3.50E07 |
|      |         |         | 29      |
|      |         |         | <0.4    |
|      |         |         | <0.01   |
|      |         |         | <0.050  |
|      |         |         | <0.050  |
|      |         |         | <0.005  |



1406

LC

1651

LC

02-02-2016 10-02-2016 16-02-2016 25-02-2016

2078

LC

**Establecimiento: GRAL. ALVEAR (LAGUNAS)** 

Punto: PM51

Salida

1167

LC

Sitio

N°Análisis

Matriz

Fecha Hora

|   |                                  |              | Hola         |
|---|----------------------------------|--------------|--------------|
|   |                                  |              | Tipo Muestra |
|   | Determinacion                    | Umedida      | ,            |
|   | pН                               | unidad de pH |              |
|   | Conductividad                    | μS/cm        |              |
|   | Sólidos sedimentables en 10 min. | ml/l         |              |
|   | Sólidos en suspensión totales    | mg/l         |              |
|   | Sólidos en suspensión fijos      | mg/l         |              |
| 0 | Sólidos en suspensión volátiles  | mg/l         |              |
| 0 | Cloruros (CL-)                   | mg/l         |              |
|   | Alcalinidad                      | mg/l         |              |
| 0 | Dureza total                     | mg/l         |              |
| 0 | Dureza cálcica                   | mg/l         |              |
|   | Calcio (Ca++)                    | mg/l         |              |
| 0 | Magnesio (Mg++)                  | mg/l         |              |
| 0 | SODIO                            | mg/l         |              |
| 0 | POTASIO                          | mg/l         |              |
| 2 | R.A.S.                           | N°           |              |
| 0 | Sulfuros totales (S=)            | mg/l         |              |
| 0 | Nitrógeno amoniacal (N-NH3)      | mg/l         |              |
| 0 | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              |
| 0 | D.B.O. ( 5 días, 20℃)            | mg/l         |              |
|   | D.Q.O.                           | mg/l         |              |
|   | Escherichia coli                 | NMP/100 ml   |              |
|   | Huevos de Helmintos              | Huevos /1000 | ı            |
| 0 | PLOMO                            | mg/l         |              |
|   | CADMIO                           | mg/l         |              |
|   | CROMO                            | mg/l         |              |
|   | ARSÉNICO                         | mg/l         |              |

mg/l

|   | 11:00  | 10:15   | 11:00   | 09:00   |
|---|--------|---------|---------|---------|
| a | Р      | Р       | Р       | PE      |
|   | Vision | Valor   | Miles   | Valor   |
|   | 7.5    | 7.3     | 7.2     | 7.6     |
|   | 2280   | 2230    | 2210    | 2360    |
|   |        |         |         | <0.1    |
|   |        |         |         | 120     |
|   |        |         |         | 10      |
|   |        |         |         | 110     |
|   |        |         |         | 278     |
|   |        |         |         | 288     |
|   |        |         |         | 618     |
|   |        |         |         | 502     |
|   |        |         |         | 201     |
|   |        |         |         | 28      |
|   |        |         |         | 215     |
|   |        |         |         | 28      |
|   |        |         |         | 3.77    |
|   |        |         |         | <0.2    |
|   |        |         |         | 25.2    |
|   |        |         |         | <0.01   |
|   |        |         |         | 46      |
|   | 216    | 184     | 187     | 223     |
|   |        | 2.10E05 | 3.50E03 | 2.10E04 |
|   |        |         |         | <1      |
|   |        |         |         | <0.4    |
|   |        |         |         | <0.01   |
|   |        |         |         | <0.050  |
|   |        |         |         | <0.050  |
|   |        |         |         | <0.005  |

MERCURIO



Establecimiento: JUNÍN Punto: JU AC

| Sitio        | Salida ant | es de clora |
|--------------|------------|-------------|
| N°Análisis   | 1101       | 1846        |
| Matriz       | LC         | LC          |
| Fecha        | 01-02-2016 | 22-02-2016  |
| Hora         | 10:05      | 09:55       |
| Tipo Muestra | Р          | PE          |

| den | Determinacion                   | Umedida      |
|-----|---------------------------------|--------------|
| 50  | рН                              | unidad de pH |
| 31  | Conductividad                   | μS/cm        |
| 80  | Sólidos en suspensión totales   | mg/l         |
| 90  | Sólidos en suspensión fijos     | mg/l         |
| 100 | Sólidos en suspensión volátiles | mg/l         |
|     | Cloruros (CL-)                  | mg/l         |
| 133 | Alcalinidad                     | mg/l         |
| 140 | Dureza total                    | mg/l         |
|     | Dureza cálcica                  | mg/l         |
| 180 | Calcio (Ca++)                   | mg/l         |
| 200 | Magnesio (Mg++)                 | mg/l         |
|     | SODIO                           | mg/l         |
|     | POTASIO                         | mg/l         |
| 265 | R.A.S.                          | N°           |
| 270 | Sulfuros totales (S=)           | mg/l         |
| 300 | Nitrógeno amoniacal (N-NH3)     | mg/l         |
| 310 | Nitrógeno de Nitritos (N-NO2-)  | mg/l         |
| 366 | D.B.O. ( 5 días, 20℃)           | mg/l         |
| 370 | D.Q.O.                          | mg/l         |
| 540 | Escherichia coli                | NMP/100 ml   |
|     |                                 |              |

| •       | . –     |
|---------|---------|
| Visitor | Wales   |
| 7.3     | 7.4     |
| 1910    | 1920    |
|         | 125     |
|         | 25      |
|         | 100     |
|         | 150     |
|         | 296     |
|         | 566     |
|         | 486     |
|         | 194     |
|         | 20      |
|         | 109     |
|         | 17      |
|         | 1.99    |
|         | <0.2    |
|         | 37.0    |
|         | <0.01   |
|         | 29      |
| 176     | 186     |
|         | 3.50E06 |



Establecimiento: JUNÍN Punto: PM06

| Sitio        | Entrada    |            |            |            |
|--------------|------------|------------|------------|------------|
| N°Análisis   | 1099       | 1334       | 1557       | 1844       |
| Matriz       | LC         | LC         | LC         | LC         |
| Fecha        | 01-02-2016 | 10-02-2016 | 15-02-2016 | 22-02-2016 |
| Hora         | 09:55      | 10:50      | 09:50      | 09:50      |
| Tipo Muestra | Р          | Р          | Р          | PE         |
|              | Volor      | Votor      | Valor      | Valor      |

| den | Determinacion                    | Umedida      |
|-----|----------------------------------|--------------|
| 50  | рН                               | unidad de pH |
| 31  | Conductividad                    | μS/cm        |
| 60  | Sólidos sedimentables en 10 min. | ml/l         |
| 70  | Sólidos sedimentables en 2 hs    | ml/l         |
| 80  | Sólidos en suspensión totales    | mg/l         |
| 90  | Sólidos en suspensión fijos      | mg/l         |
| 100 | Sólidos en suspensión volátiles  | mg/l         |
| 120 | Sulfatos (SO4=)                  | mg/l         |
| 130 | Alcalinidad                      | mg/l         |
| 270 | Sulfuros totales (S=)            | mg/l         |
| 300 | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 310 | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 360 | D.B.O. ( 5 días, 20℃)            | mg/l         |
| 370 | D.Q.O.                           | mg/l         |
| 540 | Escherichia coli                 | NMP/100 ml   |
| 560 | Huevos de Helmintos              | Huevos /1000 |
|     | PLOMO                            | mg/l         |
|     | CADMIO                           | mg/l         |
| 590 | CROMO                            | mg/l         |
| 800 | ARSÉNICO                         | mg/l         |
| 620 | MERCURIO                         | mg/l         |
|     |                                  |              |

| - Nation | Malor   | Malor   | Males   |
|----------|---------|---------|---------|
| 7.8      | 7.6     | 7.5     | 7.4     |
| 1830     | 1930    | 1780    | 2020    |
|          |         |         | 0.1     |
|          |         |         | 0.1     |
|          |         |         | 18      |
|          |         |         | 4       |
|          |         |         | 14      |
|          |         |         | 340     |
|          |         |         | 512     |
|          |         |         | 1.5     |
|          |         |         | 39.2    |
|          |         |         | <0.01   |
|          |         |         | 97      |
| 160      | 294     | 193     | 260     |
|          | 2.30E07 | 2.10E07 | 2.10E07 |
|          |         |         | 28      |
|          |         |         | <0.4    |
|          |         |         | <0.01   |
|          |         |         | <0.050  |
|          |         |         | <0.050  |
|          | ·       | ·       | <0.005  |
|          |         |         |         |



Establecimiento: JUNÍN Pu

Punto: PM07

|     | Determinacion                    | Umedida      |
|-----|----------------------------------|--------------|
| 200 | pH                               | unidad de pH |
| 31  | Conductividad                    | μS/cm        |
| CC. | Sólidos sedimentables en 10 min. | ml/l         |
| ×   | Sólidos sedimentables en 2 hs    | ml/l         |
| 80  | Sólidos en suspensión totales    | mg/l         |
| 20  | Sólidos en suspensión fijos      | mg/l         |
| 00  | Sólidos en suspensión volátiles  | mg/l         |
| 10  | Cloruros (CL-)                   | mg/l         |
|     | Sulfatos (SO4=)                  | mg/l         |
| ×   | Alcalinidad                      | mg/l         |
| 40  | Dureza total                     | mg/l         |
| 50  | Dureza cálcica                   | mg/l         |
|     | Calcio (Ca++)                    | mg/l         |
| oc  | Magnesio (Mg++)                  | mg/l         |
| 2   | SODIO                            | mg/l         |
| 40  | POTASIO                          | mg/l         |
|     | R.A.S.                           | N°           |
|     | Sulfuros totales (S=)            | mg/l         |
|     | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 10  | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
|     | D.B.O. ( 5 días, 20℃)            | mg/l         |
|     | D.Q.O.                           | mg/l         |
| **  | Escherichia coli                 | NMP/100 ml   |
|     | Huevos de Helmintos              | Huevos /1000 |
|     | PLOMO                            | mg/l         |
|     | CADMIO                           | mg/l         |
|     | CROMO                            | mg/l         |
|     | ARSÉNICO                         | mg/l         |
|     |                                  |              |

| Sitio        | Salida     |            |            |            |
|--------------|------------|------------|------------|------------|
| N°Análisis   | 1100       | 1335       | 1558       | 1845       |
| Matriz       | LC         | LC         | LC         | LC         |
| Fecha        | 01-02-2016 | 10-02-2016 | 15-02-2016 | 22-02-2016 |
| Hora         | 10:00      | 11:00      | 09:55      | 10:00      |
| Tipo Muestra | Р          | Р          | Р          | PE         |
|              | Mater      | Malor      | Malor      | Valor      |
|              | 7.5        | 7.4        | 7.4        | 7.4        |
|              | 1880       | 1970       | 1900       | 1930       |

| 7.5  | 7.4     | 7.4     | 7.4     |
|------|---------|---------|---------|
| 1880 | 1970    | 1900    | 1930    |
|      |         |         | 0.1     |
|      |         |         | 0.1     |
|      |         |         | 133     |
|      |         |         | 33      |
|      |         |         | 100     |
|      |         |         | 152     |
|      |         |         | 480     |
|      |         |         | 296     |
|      |         |         | 562     |
|      |         |         | 482     |
|      |         |         | 193     |
|      |         |         | 20      |
|      |         |         | 134     |
|      |         |         | 22      |
|      |         |         | 2.45    |
|      |         |         | <0.2    |
|      |         |         | 37.0    |
|      |         |         | <0.01   |
|      |         |         | 38      |
| 217  | 238     | 194     | 241     |
|      | 7.50E03 | 3.50E05 | 1.10E06 |
|      |         |         | 5       |
|      |         |         | <0.4    |
|      |         |         | <0.01   |
|      |         |         | <0.050  |
|      |         |         | <0.050  |
|      |         |         | <0.005  |

MERCURIO



Establecimiento: LA PAZ Punto: PM45

| Sitio        | Entrada    |
|--------------|------------|
| N°Análisis   |            |
| Matriz       | LC         |
| Fecha        | 23-02-2016 |
| Hora         |            |
| Tipo Muestra | PE         |



Determinacion

# DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

Establecimiento: LA PAZ Punto: PM46

Umedida

| LC<br>23-02-2016 |
|------------------|
| 23-02-2016       |
|                  |
|                  |
|                  |
| PE               |
| 1 //             |

Arnaldo G. Sola Jefe Area Efluentes



Establecimiento: PALMIRA Punto: PM09

| Sitio        | Entrada    |            |            |            |            |
|--------------|------------|------------|------------|------------|------------|
| N°Análisis   | 1102       | 1336       | 1850       | 2069       |            |
| Matriz       | LC         | LC         | LC         | LC         | LC         |
| Fecha        | 01-02-2016 | 10-02-2016 | 22-02-2016 | 25-02-2016 | 15-02-2016 |
| Hora         | 13:45      | 09:15      | 08:30      | 18:45      |            |
| Tipo Muestra | Р          | Р          | Р          | PE         | PE         |
|              | Valor      | Vidor      | Valor      | Valor      | Valor      |

| Orden | Determinacion                    | Umedida      |
|-------|----------------------------------|--------------|
| 10    | рН                               | unidad de pH |
| 31    | Conductividad                    | μS/cm        |
| 63    | Sólidos sedimentables en 10 min. | ml/l         |
| 70    | Sólidos sedimentables en 2 hs    | ml/l         |
| 80    | Sólidos en suspensión totales    | mg/l         |
|       | Sólidos en suspensión fijos      | mg/l         |
| 500   | Sólidos en suspensión volátiles  | mg/l         |
| 130   | Alcalinidad                      | mg/l         |
|       | Sulfuros totales (S=)            | mg/l         |
| 300   | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 310   | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 380   | D.B.O. ( 5 días, 20℃)            | mg/l         |
|       | D.Q.O.                           | mg/l         |
| 540   | Escherichia coli                 | NMP/100 ml   |
|       | Huevos de Helmintos              | Huevos /1000 |
| 570   | PLOMO                            | mg/l         |
| 580   | CADMIO                           | mg/l         |
| 500   | CROMO                            | mg/l         |
| 600   | ARSÉNICO                         | mg/l         |
| 620   | MERCURIO                         | mg/l         |
| 1000  |                                  |              |

| -    | Malor   | Malor   | Malor   | Valor |
|------|---------|---------|---------|-------|
| 7.6  | 7.5     | 7.5     | 7.4     |       |
| 1350 | 1270    | 1300    | 1340    |       |
|      |         |         | 0.7     |       |
|      |         |         | 1.0     |       |
|      |         |         | 115     |       |
|      |         |         | 45      |       |
|      |         |         | 70      |       |
|      |         |         | 372     |       |
|      |         |         | 18.0    |       |
|      |         |         | 40.3    |       |
|      |         |         | <0.01   |       |
|      |         |         | 150     |       |
| 398  | 268     | 208     | 329     |       |
|      | 7.50E07 | 1.10E07 | 2.10E07 |       |
|      |         |         | 29      |       |
|      |         |         | <0.4    |       |
|      |         |         | <0.01   |       |
|      |         |         | <0.050  |       |
|      |         |         | <0.050  |       |
|      |         |         | <0.005  |       |
|      |         |         |         |       |



Establecimiento: PALMIRA Punto: PM11

| Sitio        | Salida     |            |            |            |            |            |            |
|--------------|------------|------------|------------|------------|------------|------------|------------|
| N°Análisis   | 1103       | 1337       | 1338       | 1778       | 1851       | 2070       | 2127       |
| Matriz       | LC         |
| Fecha        | 01-02-2016 | 10-02-2016 | 10-02-2016 | 18-02-2016 | 22-02-2016 | 25-02-2016 | 29-02-2016 |
| Hora         | 13:35      | 09:00      | 09:00      | 14:05      | 08:40      | 18:25      | 09:20      |
| Tipo Muestra | Р          | Р          | DU         | Р          | Р          | PE         | Р          |
| J            | 1992       | Malice     | Males      | Mater      | Valor      | Valor      | Valor      |
|              | 8.7        | 8.2        |            | 8.1        | 8.2        | 8.6        | 7.8        |
|              | 1550       | 1340       |            | 1340       | 1330       | 1230       | 1310       |

| Irden | Determinacion                    | Umedida      |
|-------|----------------------------------|--------------|
| 10    | pH                               | unidad de pH |
|       | Conductividad                    | μS/cm        |
| 60    | Sólidos sedimentables en 10 min. | ml/l         |
|       | Sólidos sedimentables en 2 hs    | ml/l         |
|       | Sólidos en suspensión totales    | mg/l         |
|       | Sólidos en suspensión fijos      | mg/l         |
| 100   | Sólidos en suspensión volátiles  | mg/l         |
|       | Cloruros (CL-)                   | mg/l         |
| 130   | Alcalinidad                      | mg/l         |
| 540   | Dureza total                     | mg/l         |
| 160   | Dureza cálcica                   | mg/l         |
| 180   | Calcio (Ca++)                    | mg/l         |
|       | Magnesio (Mg++)                  | mg/l         |
| 220   | SODIO                            | mg/l         |
|       | POTASIO                          | mg/l         |
|       | R.A.S.                           | N°           |
|       | Sulfuros totales (S=)            | mg/l         |
|       | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 310   | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 380   | D.B.O. ( 5 días, 20℃)            | mg/l         |
|       | D.Q.O.                           | mg/l         |
| 540   | Escherichia coli                 | NMP/100 ml   |
| 550   | Huevos de Helmintos              | Huevos /1000 |
| 570   | PLOMO                            | mg/l         |
| 580   | CADMIO                           | mg/l         |
| 500   | CROMO                            | mg/l         |
| 600   | ARSÉNICO                         | mg/l         |
|       | MERCURIO                         | mg/l         |
| 1000  |                                  |              |

| -    |      |    |         |         |         |         |
|------|------|----|---------|---------|---------|---------|
| 8.7  | 8.2  |    | 8.1     | 8.2     | 8.6     | 7.8     |
| 1550 | 1340 |    | 1340    | 1330    | 1230    | 1310    |
|      |      |    |         |         | 0.1     |         |
|      |      |    |         |         | 0.1     |         |
|      |      |    |         |         | 18      |         |
|      |      |    |         |         | 4       |         |
|      |      |    |         |         | 14      |         |
|      |      |    |         |         | 121     |         |
|      |      |    |         |         | 280     |         |
|      |      |    |         |         | 353     |         |
|      |      |    |         |         | 277     |         |
|      |      |    |         |         | 111     |         |
|      |      |    |         |         | 19      |         |
|      |      |    |         |         | 95      |         |
|      |      |    |         |         | 23      |         |
|      |      |    |         |         | 2.19    |         |
|      |      |    |         |         | <0.2    |         |
|      |      |    |         |         | 23.0    |         |
|      |      |    |         |         | 0.05    |         |
|      |      |    |         |         | 12      |         |
| 297  | 122  |    | 130     | 124     | 86      | 151     |
|      | <2   | <2 | 3.50E02 | 2.40E02 | 3.50E02 | 3.50E02 |
|      |      |    |         |         | <1      |         |
|      |      |    |         |         | <0.4    |         |
|      |      |    |         |         | <0.01   |         |
|      |      |    |         |         | <0.050  |         |
|      |      |    |         |         | <0.050  |         |
|      |      |    |         |         | <0.005  |         |
|      |      |    |         |         |         |         |



| Establecimiento: PALMIRA | Punto: PM11 |
|--------------------------|-------------|
|--------------------------|-------------|

|       |                                  |              | Sitio        |            |
|-------|----------------------------------|--------------|--------------|------------|
|       |                                  |              | N°Análisis   |            |
|       |                                  |              | Matriz       | LC         |
|       |                                  |              | Fecha        | 15-02-2016 |
|       |                                  |              | Hora         |            |
|       |                                  |              | Tipo Muestra | PE         |
| Orden | Determinacion                    | Umedida      | J            | Value      |
|       | рН                               | unidad de pH |              |            |
| 31    | Conductividad                    | μS/cm        |              |            |
| 60    | Sólidos sedimentables en 10 min. | ml/l         |              |            |
| 70    | Sólidos sedimentables en 2 hs    | ml/l         |              |            |
| 80    | Sólidos en suspensión totales    | mg/l         |              |            |
| 90    | Sólidos en suspensión fijos      | mg/l         |              |            |
| 100   | Sólidos en suspensión volátiles  | mg/l         |              |            |
|       | Cloruros (CL-)                   | mg/l         |              |            |
|       | Alcalinidad                      | mg/l         |              |            |
| 540   | Dureza total                     | mg/l         |              |            |
| 150   | Dureza cálcica                   | mg/l         |              |            |
|       | Calcio (Ca++)                    | mg/l         |              |            |
|       | Magnesio (Mg++)                  | mg/l         |              |            |
| 220   | SODIO                            | mg/l         |              |            |
| 240   | POTASIO                          | mg/l         |              |            |
| 265   | R.A.S.                           | N°           |              |            |
| 270   | Sulfuros totales (S=)            | mg/l         |              |            |
| 300   | Nitrógeno amoniacal (N-NH3)      | mg/l         |              |            |
| 310   | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              |            |
| 350   | D.B.O. ( 5 días, 20℃)            | mg/l         |              |            |
| 370   | D.Q.O.                           | mg/l         |              |            |
| 540   | Escherichia coli                 | NMP/100 ml   |              |            |
| 550   | Huevos de Helmintos              | Huevos /1000 | l            |            |
| 570   | PLOMO                            | mg/l         |              |            |
| 530   | CADMIO                           | mg/l         |              |            |
| 590   | CROMO                            | mg/l         |              |            |
| 600   | ARSÉNICO                         | mg/l         |              |            |
| 620   | MERCURIO                         | mg/l         |              |            |
|       |                                  |              |              |            |

Sitio



**Establecimiento: POTRERILLOS (LODOS ACTIVADOS)** 

Punto: PM52

|     |                                  |              | Sitio        | Entrada    |
|-----|----------------------------------|--------------|--------------|------------|
|     |                                  |              | N°Análisis   | 1610       |
|     |                                  |              | Matriz       | LC         |
|     |                                  |              | Fecha        | 16-02-2016 |
|     |                                  |              | Hora         | 16:40      |
|     |                                  |              | Tipo Muestra | PE         |
| n   | Determinacion                    | Umedida      |              | Vision     |
| 50  | pH                               | unidad de pH |              | 7.2        |
|     | Conductividad                    | μS/cm        |              | 980        |
| CC. | Sólidos sedimentables en 10 min. | ml/l         |              | 0.2        |
| ×   | Sólidos sedimentables en 2 hs    | ml/l         |              | 2.0        |
|     | Sólidos en suspensión totales    | mg/l         |              | 100        |
|     | Sólidos en suspensión fijos      | mg/l         |              | 20         |
|     | Sólidos en suspensión volátiles  | mg/l         |              | 80         |
|     | Sulfatos (SO4=)                  | mg/l         |              | 90         |
|     | Alcalinidad                      | mg/l         |              | 300        |
| 270 | Sulfuros totales (S=)            | mg/l         |              | 13.4       |
| 300 | Nitrógeno amoniacal (N-NH3)      | mg/l         |              | 36.4       |
|     | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              | <0.01      |
|     | D.B.O. ( 5 días, 20℃)            | mg/l         |              | 141        |
| 370 | D.Q.O.                           | mg/l         |              | 354        |
| 540 | Escherichia coli                 | NMP/100 ml   |              | 2.40E07    |
| 566 | Huevos de Helmintos              | Huevos /1000 | ı            | 12         |
|     | PLOMO                            | mg/l         |              | <0.4       |
|     | CADMIO                           | mg/l         |              | <0.01      |
| 500 | СКОМО                            | mg/l         |              | <0.050     |
| 500 | ARSÉNICO                         | mg/l         |              | <0.050     |
|     | MERCURIO                         | mg/l         |              | <0.005     |
|     |                                  |              |              |            |



**Establecimiento: POTRERILLOS (LODOS ACTIVADOS)** 

Sitio

N°Análisis

Punto: PM53

Salida

1611

<0.005

|                                  |              | Matriz       | LC         |
|----------------------------------|--------------|--------------|------------|
|                                  |              | Fecha        | 16-02-2016 |
|                                  |              | Hora         | 16:55      |
|                                  |              | Tipo Muestra | PE         |
| Determinacion                    | Umedida      |              | Value      |
| pH                               | unidad de pH |              | 7.5        |
| Conductividad                    | μS/cm        |              | 750        |
| Sólidos sedimentables en 10 min. | ml/l         |              | <0.1       |
| Sólidos sedimentables en 2 hs    | ml/l         |              | <0.1       |
| Sólidos en suspensión totales    | mg/l         |              | 2          |
| Sólidos en suspensión fijos      | mg/l         |              | ND         |
| Sólidos en suspensión volátiles  | mg/l         |              | 2          |
| Cloruros (CL-)                   | mg/l         |              | 53         |
| Sulfatos (SO4=)                  | mg/l         |              | 230        |
| Alcalinidad                      | mg/l         |              | 76         |
| Dureza total                     | mg/l         |              | 231        |
| Dureza cálcica                   | mg/l         |              | 171        |
| Calcio (Ca++)                    | mg/l         |              | 68         |
| Magnesio (Mg++)                  | mg/l         |              | 15         |
| SODIO                            | mg/l         |              | 51         |
| POTASIO                          | mg/l         |              | 13         |
| R.A.S.                           | N°           |              | 1.46       |
| Sulfuros totales (S=)            | mg/l         |              | <0.2       |
| Nitrógeno amoniacal (N-NH3)      | mg/l         |              | 0.1        |
| Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              | 0.09       |
| D.B.O. ( 5 días, 20℃)            | mg/l         |              | 2          |
| D.Q.O.                           | mg/l         |              | 8          |
| Escherichia coli                 | NMP/100 ml   |              | 1.50E04    |
| Huevos de Helmintos              | Huevos /1000 | r            | <1         |
| PLOMO                            | mg/l         |              | <0.4       |
| CADMIO                           | mg/l         |              | <0.01      |
| CROMO                            | mg/l         |              | <0.050     |
| ARSÉNICO                         | mg/l         |              | <0.050     |
|                                  |              |              | 0.005      |

mg/l

Arnaldo G. Sola Jefe Area Efluentes

MERCURIO



Escherichia coli

#### **DEPARTAMENTO LABORATORIO** INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

|      | Establecimiento: POTRERILLOS (LODOS ACTIVADOS) Punto: POT AC |              |              |            |  |  |
|------|--------------------------------------------------------------|--------------|--------------|------------|--|--|
|      |                                                              |              | Sitio        | Salida ant |  |  |
|      |                                                              |              | N°Análisis   | 1612       |  |  |
|      |                                                              |              | Matriz       | LC         |  |  |
|      |                                                              |              | Fecha        | 16-02-2016 |  |  |
|      |                                                              |              | Hora         | 16:45      |  |  |
|      |                                                              |              | Tipo Muestra | PE         |  |  |
| rden | Determinacion                                                | Umedida      |              | Vision     |  |  |
|      | pH                                                           | unidad de pH |              | 7.2        |  |  |
|      | Conductividad                                                | μS/cm        |              | 740        |  |  |
| 33   | D.Q.O.                                                       | mg/l         |              | 8          |  |  |
|      | Escherichia coli                                             | NMP/100 ml   |              | 9.30E05    |  |  |

NMP/100 ml



Establecimiento: RIVADAVIA Punto: PM01

|       |                                  |              | 11           |            |            |            |           |
|-------|----------------------------------|--------------|--------------|------------|------------|------------|-----------|
|       |                                  |              | Sitio        | Entrada    |            |            |           |
|       |                                  |              | N°Análisis   | 1104       | 1339       | 1559       | 1847      |
|       |                                  |              | Matriz       | LC         | LC         | LC         | LC        |
|       |                                  |              | Fecha        | 01-02-2016 | 10-02-2016 | 15-02-2016 | 22-02-201 |
|       |                                  |              | Hora         | 11:50      | 11:35      | 10:40      | 10:30     |
|       |                                  |              | Tipo Muestra | Р          | Р          | Р          | PE        |
| Endon | Determinacion                    | Umedida      | J            | Value      | Valor      | Malor      | Matter    |
| 90    | рН                               | unidad de pH |              | 7.5        | 7.5        | 7.5        | 7.4       |
| 31    | Conductividad                    | μS/cm        |              | 1750       | 1710       | 1680       | 1790      |
| GC.   | Sólidos sedimentables en 10 min. | ml/l         |              |            |            |            | 1.5       |
| 70    | Sólidos sedimentables en 2 hs    | ml/l         |              |            |            |            | 1.5       |
| 80    | Sólidos en suspensión totales    | mg/l         |              |            |            |            | 215       |
| ox    | Sólidos en suspensión fijos      | mg/l         |              |            |            |            | 140       |
| 100   | Sólidos en suspensión volátiles  | mg/l         |              |            |            |            | 75        |
| 130   | Alcalinidad                      | mg/l         |              |            |            |            | 344       |
| 270   | Sulfuros totales (S=)            | mg/l         |              |            |            |            | 5.3       |
| 300   | Nitrógeno amoniacal (N-NH3)      | mg/l         |              |            |            |            | 33.6      |
| 310   | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              |            |            |            | <0.01     |
| 360   | D.B.O. ( 5 días, 20℃)            | mg/l         |              |            |            |            | 99        |
| 370   | D.Q.O.                           | mg/l         |              | 238        | 198        | 199        | 254       |
| 540   | Escherichia coli                 | NMP/100 ml   |              |            | 3.50E07    | 1.50E07    | 3.50E07   |
| 560   | Huevos de Helmintos              | Huevos /1000 | ı            |            |            |            | 17        |
| 570   | PLOMO                            | mg/l         |              |            |            |            | <0.4      |
| 580   | CADMIO                           | mg/l         |              |            |            |            | <0.01     |
| 500   | CROMO                            | mg/l         |              |            |            |            | <0.050    |
| 600   | ARSÉNICO                         | mg/l         |              |            |            |            | <0.050    |
| 620   | MERCURIO                         | mg/l         |              |            |            |            | <0.005    |
|       |                                  |              |              |            |            |            |           |

LC



#### **DEPARTAMENTO LABORATORIO** INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

1340

LC

1560

LC

**Establecimiento: RIVADAVIA** 

Punto: PM02

Sitio

N°Análisis

Matriz

Salida

1105

LC

| rden | Determinacion                    | Umedida      |
|------|----------------------------------|--------------|
| 10   | pH                               | unidad de pH |
| 31   | Conductividad                    | μS/cm        |
| 50   | Sólidos sedimentables en 10 min. | ml/l         |
| 70   | Sólidos sedimentables en 2 hs    | ml/l         |
|      | Sólidos en suspensión totales    | mg/l         |
| 90   | Sólidos en suspensión fijos      | mg/l         |
| 100  | Sólidos en suspensión volátiles  | mg/l         |
| 110  | Cloruros (CL-)                   | mg/l         |
| 130  | Alcalinidad                      | mg/l         |
| 540  | Dureza total                     | mg/l         |
| 550  | Dureza cálcica                   | mg/l         |
| 130  | Calcio (Ca++)                    | mg/l         |
| 200  | Magnesio (Mg++)                  | mg/l         |
| 220  | SODIO                            | mg/l         |
| 240  | POTASIO                          | mg/l         |
| 265  | R.A.S.                           | N°           |
| 270  | Sulfuros totales (S=)            | mg/l         |
| 300  | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 310  | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 380  | D.B.O. ( 5 días, 20℃)            | mg/l         |
| 370  | D.Q.O.                           | mg/l         |
| 540  | Escherichia coli                 | NMP/100 ml   |
| 550  | Huevos de Helmintos              | Huevos /1000 |
| 570  | PLOMO                            | mg/l         |
| 530  | CADMIO                           | mg/l         |
| 500  | CROMO                            | mg/l         |
| 800  | ARSÉNICO                         | mg/l         |
| 620  | MERCURIO                         | mg/l         |
| 1000 |                                  |              |

| Fecha        | 01-02-2016 | 10-02-2016 | 15-02-2016 | 22-02-2016 | 29-02-2016 | 18-02 | 2-2016 |
|--------------|------------|------------|------------|------------|------------|-------|--------|
| Hora         | 12:00      | 11:25      | 10:30      | 10:40      | 10:55      |       |        |
| Tipo Muestra | Р          | Р          | Р          | PE         | Р          | DU    | Р      |
|              | Value      | Valor      | Valor      | Valor      | Walter     | Valor | Valor  |
|              | 8.1        | 8.1        | 7.7        | 7.6        | 7.8        |       |        |
|              | 1870       | 1750       | 1750       | 1750       | 1690       |       |        |
|              |            |            |            | <0.1       |            |       |        |
|              |            |            |            | <0.1       |            |       |        |
|              |            |            |            | 115        |            |       |        |
|              |            |            |            | 5          |            |       |        |
|              |            |            |            | 110        |            |       |        |
|              |            |            |            | 160        |            |       |        |
|              |            |            |            | 248        |            |       |        |
|              |            |            |            | 518        |            |       |        |
|              |            |            |            | 429        |            |       |        |
|              |            |            |            | 172        |            |       |        |
|              |            |            |            | 21         |            |       |        |
|              |            |            |            | 134        |            |       |        |
|              |            |            |            | 23         |            |       |        |
|              |            |            |            | 2.57       |            |       |        |
|              |            |            |            | <0.2       |            |       |        |
|              |            |            |            | 21.8       |            |       |        |
|              |            |            |            | <0.01      |            |       |        |
|              |            |            |            | 54         |            |       |        |
|              | 210        | 214        | 182        | 233        | 207        |       |        |
|              |            | 2.40E04    | 4.60E04    | 2.40E04    | 2.40E04    |       |        |
|              |            |            |            | <1         |            |       |        |
|              |            |            |            | <0.4       |            |       |        |
|              |            |            |            | <0.01      |            |       |        |
|              |            |            |            | <0.050     |            |       |        |
|              |            |            |            | <0.050     |            |       |        |
|              |            |            |            | <0.005     |            |       |        |

1848

LC

2131

LC



Establecimiento: RIVADAVIA Punto: PM02

|     |                                  |              | Sitio        |            |
|-----|----------------------------------|--------------|--------------|------------|
|     |                                  |              | N°Análisis   |            |
|     |                                  |              | Matriz       |            |
|     |                                  |              | Fecha        | 25-02-2016 |
|     |                                  |              | Hora         |            |
|     |                                  |              | Tipo Muestra | Р          |
| ies | Determinacion                    | Umedida      | J            | Valor      |
|     | pH                               | unidad de pH |              |            |
|     | Conductividad                    | μS/cm        |              |            |
|     | Sólidos sedimentables en 10 min. | ml/l         |              |            |
|     | Sólidos sedimentables en 2 hs    | ml/l         |              |            |
| -   | Sólidos en suspensión totales    | mg/l         |              |            |
| 5   | Sólidos en suspensión fijos      | mg/l         |              |            |
| 50  | Sólidos en suspensión volátiles  | mg/l         |              |            |
| 11  | Cloruros (CL-)                   | mg/l         |              |            |
| 13  | Alcalinidad                      | mg/l         |              |            |
| 5.6 | Dureza total                     | mg/l         |              |            |
| 50  | Dureza cálcica                   | mg/l         |              |            |
| 12  | Calcio (Ca++)                    | mg/l         |              |            |
| 20  | Magnesio (Mg++)                  | mg/l         |              |            |
| 22  | SODIO                            | mg/l         |              |            |
| 24  | POTASIO                          | mg/l         |              |            |
| 20  | R.A.S.                           | N°           |              |            |
| 27  | Sulfuros totales (S=)            | mg/l         |              |            |
| 30  | Nitrógeno amoniacal (N-NH3)      | mg/l         |              |            |
| 31  | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              |            |
| 38  | D.B.O. ( 5 días, 20℃)            | mg/l         |              |            |
| 37  | D.Q.O.                           | mg/l         |              |            |
| 54  | Escherichia coli                 | NMP/100 ml   |              |            |
| 50  | Huevos de Helmintos              | Huevos /1000 | i            |            |
| 57  | PLOMO                            | mg/l         |              |            |
| 53  | CADMIO                           | mg/l         |              |            |
| 55  | CROMO                            | mg/l         |              |            |
| 60  | ARSÉNICO                         | mg/l         |              |            |
| 0   | MERCURIO                         | mg/l         |              |            |
|     |                                  |              |              |            |



Determinacion

Conductividad

Escherichia coli

рΗ

D.Q.O.

#### **DEPARTAMENTO LABORATORIO** INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

**Establecimiento: RIVADAVIA** Punto: RI S1

Umedida

|              | Sitio        | Salida de  | serie 1    |
|--------------|--------------|------------|------------|
|              | N°Análisis   | 2128       |            |
|              | Matriz       | LC         | LC         |
|              | Fecha        | 29-02-2016 | 22-02-2016 |
|              | Hora         | 11:20      |            |
|              | Tipo Muestra | Р          | Р          |
|              |              | Valor      | Vidor      |
| Umedida      |              |            |            |
| unidad de pH |              | 8.3        |            |
| μS/cm        |              | 1670       |            |
| mg/l         |              | 247        |            |
| NMP/100 ml   |              | 1.10E04    |            |
|              |              |            |            |



Establecimiento: RIVADAVIA Punto: RI S2

| Sitio        | Salida de  | serie 2    |
|--------------|------------|------------|
| N°Análisis   | 1849       | 2129       |
| Matriz       | LC         | LC         |
| Fecha        | 22-02-2016 | 29-02-2016 |
| Hora         | 10:50      | 11:15      |
| Tipo Muestra | Р          | Р          |
|              |            |            |

| den | Determinacion    | Umedida      |
|-----|------------------|--------------|
|     | рН               | unidad de pH |
|     | Conductividad    | μS/cm        |
| 370 | D.Q.O.           | mg/l         |
| 540 | Escherichia coli | NMP/100 ml   |

| 7.7     | 7.6     |
|---------|---------|
| 1740    | 1660    |
| 186     | 193     |
| 2.10E04 | 4.60E04 |



| Establecimiento: RIVADAVIA | Punto: RI S3 |
|----------------------------|--------------|
|----------------------------|--------------|

|       |                  |              | Sitio        | Salida de  | serie 3    |
|-------|------------------|--------------|--------------|------------|------------|
|       |                  |              | N°Análisis   | 2130       |            |
|       |                  |              | Matriz       | LC         | LC         |
|       |                  |              | Fecha        | 29-02-2016 | 22-02-2016 |
|       |                  |              | Hora         | 11:10      |            |
|       |                  |              | Tipo Muestra | Р          | Р          |
| Orden | Determinacion    | Umedida      | J            | -          | Vision     |
| 10    | рН               | unidad de pH |              | 7.9        |            |
| 31    | Conductividad    | μS/cm        |              | 1700       |            |
| 370   | D.Q.O.           | mg/l         |              | 148        |            |
| 540   | Escherichia coli | NMP/100 ml   |              | 7.50E04    |            |
| 1000  |                  |              |              |            |            |
|       |                  |              |              |            |            |



**Establecimiento: SAN CARLOS** 

Punto: PM22

Sitio

**Entrada** 

< 0.005

|     | Determinacion                    | Umedida      |
|-----|----------------------------------|--------------|
| 20  | рН                               | unidad de pH |
| 31  | Conductividad                    | μS/cm        |
| α   | Sólidos sedimentables en 10 min. | ml/l         |
| ×   | Sólidos sedimentables en 2 hs    | ml/l         |
| 200 | Sólidos en suspensión totales    | mg/l         |
| 90  | Sólidos en suspensión fijos      | mg/l         |
| CC  | Sólidos en suspensión volátiles  | mg/l         |
| ×   | Alcalinidad                      | mg/l         |
| 71  | Sulfuros totales (S=)            | mg/l         |
| oc  | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 10  | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 60  | D.B.O. ( 5 días, 20℃)            | mg/l         |
| 7   | D.Q.O.                           | mg/l         |
| 40  | Escherichia coli                 | NMP/100 ml   |
| 70  | PLOMO                            | mg/l         |
|     | CADMIO                           | mg/l         |
| oc  | CROMO                            | mg/l         |
| 00  | ARSÉNICO                         | mg/l         |
| ×   | MERCURIO                         | mg/l         |

|   | N°Análisis   | 1211       | 1417       | 1603       | 2025       |
|---|--------------|------------|------------|------------|------------|
|   | Matriz       | LC         | LC         | LC         | LC         |
|   | Fecha        | 03-02-2016 | 11-02-2016 | 16-02-2016 | 25-02-2016 |
|   | Hora         | 17:10      | 11:30      | 16:35      | 10:00      |
|   | Tipo Muestra | PE         | Р          | Р          | Р          |
|   |              | - Victor   | Visitor    | Voles      | Valor      |
| Н |              | 7.3        | 7.6        | 7.2        | 8.0        |
|   |              | 1050       | 1140       | 1340       | 1110       |
|   |              | 1.3        |            |            |            |
|   |              | 2.0        |            |            |            |
|   |              | 146        |            |            |            |
|   |              | 31         |            |            |            |
|   |              | 115        |            |            |            |
|   |              | 344        |            |            |            |
|   |              | <0.2       |            |            |            |
|   |              | 29.5       |            |            |            |
|   |              | <0.01      |            |            |            |
|   |              | 185        |            |            |            |
|   |              | 610        | 582        | 255        | 257        |
| I |              |            | 1.50E07    | 2.10E07    | 1.50E07    |
|   |              | <0.4       |            |            |            |
|   |              | <0.01      |            |            |            |
|   |              | <0.050     |            |            |            |
|   |              | <0.050     |            |            |            |
|   |              |            |            |            |            |



Determinacion

Conductividad

рΗ

#### **DEPARTAMENTO LABORATORIO** INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

**Establecimiento: SAN CARLOS** 

Punto: PM23

|              | Sitio        | Salida     |            |            |            |            |            |
|--------------|--------------|------------|------------|------------|------------|------------|------------|
|              | N°Análisis   | 1604       | 1774       | 1775       | 1947       | 2026       | 2027       |
|              | Matriz       | LC         | LC         | LC         | LC         | LC         | LC         |
|              | Fecha        | 16-02-2016 | 18-02-2016 | 18-02-2016 | 23-02-2016 | 25-02-2016 | 25-02-2016 |
|              | Hora         | 16:40      | 08:55      | 08:55      | 16:05      | 10:10      | 10:10      |
|              | Tipo Muestra | Р          | Р          | DU         | Р          | Р          | DU         |
| Umedida      | J            | Victor     | Volor      | Valor      | Valor      | Malar      | Valor      |
| unidad de pH |              | 8.5        | 7.5        |            | 8.2        | 7.9        |            |
| μS/cm        |              | 950        | 1070       |            | 1350       | 1060       |            |
| mg/l         |              | 252        | 212        |            | 253        | 224        |            |
| NMP/100 ml   |              | 2.40E05    | 2.10E06    | 1.10E06    | <2         | 1.10E06    | 2.40E06    |

| 370 | D.Q.O.           | mg/l      |
|-----|------------------|-----------|
| 540 | Escherichia coli | NMP/100 n |
|     |                  |           |
|     |                  |           |
|     |                  |           |
|     |                  |           |
|     |                  |           |



Establecimiento: SAN CARLOS

Punto: PM49

| Sitio        | Salida (caño este) |            |  |  |
|--------------|--------------------|------------|--|--|
| N°Análisis   | 1212               | 1418       |  |  |
| Matriz       | LC                 | LC         |  |  |
| Fecha        | 03-02-2016         | 11-02-2016 |  |  |
| Hora         | 17:35              | 12:00      |  |  |
| Tipo Muestra | PE                 | Р          |  |  |

| _   |                                  |              |
|-----|----------------------------------|--------------|
| en  | Determinacion                    | Umedida      |
| 50  | рН                               | unidad de pH |
| 31  | Conductividad                    | μS/cm        |
| 60  | Sólidos sedimentables en 10 min. | ml/l         |
| 70  | Sólidos sedimentables en 2 hs    | ml/l         |
| 80  | Sólidos en suspensión totales    | mg/l         |
| 90  | Sólidos en suspensión fijos      | mg/l         |
| 100 | Sólidos en suspensión volátiles  | mg/l         |
| 110 | Cloruros (CL-)                   | mg/l         |
| 130 | Alcalinidad                      | mg/l         |
| 140 | Dureza total                     | mg/l         |
| 160 | Dureza cálcica                   | mg/l         |
| 180 | Calcio (Ca++)                    | mg/l         |
| 200 | Magnesio (Mg++)                  | mg/l         |
| 220 | SODIO                            | mg/l         |
| 240 | POTASIO                          | mg/l         |
| 265 | R.A.S.                           | N°           |
| 270 | Sulfuros totales (S=)            | mg/l         |
| 300 | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 310 | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 350 | D.B.O. ( 5 días, 20℃)            | mg/l         |
| 370 | D.Q.O.                           | mg/l         |
| 540 | Escherichia coli                 | NMP/100 ml   |
| 570 | PLOMO                            | mg/l         |
| 580 | CADMIO                           | mg/l         |
| 500 | CROMO                            | mg/l         |
| 600 | ARSÉNICO                         | mg/l         |
| 620 | MERCURIO                         | mg/l         |

| 7.0           | 7.6     |
|---------------|---------|
| 1840          | 1010    |
| <0.1          |         |
| <0.1          |         |
| 105           |         |
| 15            |         |
| 90            |         |
| 366           |         |
| 300           |         |
| 241           |         |
| 197           |         |
| 79            |         |
| 11            |         |
| 385           |         |
| 17            |         |
| 10.76         |         |
| <0.2          |         |
| 12.2          |         |
| interf. cloro |         |
| <2            |         |
| 260           | 232     |
|               | 1.10E06 |
| <0.4          |         |
| <0.01         |         |
| <0.050        |         |
| <0.050        |         |
| <0.005        |         |



Establecimiento: SAN CARLOS

Punto: SC AC

| Sitio        | Salida antes de clo |            |  |
|--------------|---------------------|------------|--|
| N°Análisis   | 1213                | 2028       |  |
| Matriz       | LC                  | LC         |  |
| Fecha        | 03-02-2016          | 25-02-2016 |  |
| Hora         | 17:20               | 10:05      |  |
| Tipo Muestra | PE                  | Р          |  |

| Determinacion                   | Umedida      |
|---------------------------------|--------------|
| рН                              | unidad de pH |
| Conductividad                   | μS/cm        |
| Sólidos en suspensión totales   | mg/l         |
| Sólidos en suspensión fijos     | mg/l         |
| Sólidos en suspensión volátiles | mg/l         |
| Cloruros (CL-)                  | mg/l         |
| Alcalinidad                     | mg/l         |
| Dureza total                    | mg/l         |
| Dureza cálcica                  | mg/l         |
| Calcio (Ca++)                   | mg/l         |
| Magnesio (Mg++)                 | mg/l         |
| SODIO                           | mg/l         |
| POTASIO                         | mg/l         |
| R.A.S.                          | N°           |
| Sulfuros totales (S=)           | mg/l         |
| Nitrógeno amoniacal (N-NH3)     | mg/l         |
| Nitrógeno de Nitritos (N-NO2-)  | mg/l         |
| D.B.O. ( 5 días, 20℃)           | mg/l         |
| D.Q.O.                          | mg/l         |
| Escherichia coli                | NMP/100 ml   |

| Valor | Valor   |
|-------|---------|
|       |         |
| 7.5   | 7.9     |
| 1030  | 1110    |
| 96    |         |
| 4     |         |
| 92    |         |
| 53    |         |
| 356   |         |
| 241   |         |
| 197   |         |
| 79    |         |
| 11    |         |
| 46    |         |
| 10    |         |
| 1.29  |         |
| <0.2  |         |
| 29.6  |         |
| <0.01 |         |
| 56    |         |
| 250   | 215     |
|       | 3.50E06 |
|       |         |



Determinacion

Conductividad

Alcalinidad

D.Q.O.

**PLOMO** 

**CADMIO** 

**CROMO** 

ARSÉNICO

**MERCURIO** 

Sulfuros totales (S=)

D.B.O. ( 5 días, 20℃)

Huevos de Helmintos

Escherichia coli

Sólidos sedimentables en 10 min.

Sólidos sedimentables en 2 hs

Sólidos en suspensión totales

Sólidos en suspensión volátiles

Nitrógeno amoniacal (N-NH3)

Nitrógeno de Nitritos (N-NO2-)

Sólidos en suspensión fijos

рΗ

#### **DEPARTAMENTO LABORATORIO** INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

**Establecimiento: SAN MARTÍN** Punto: PM04

mg/l

mg/l

mg/l

mg/l

mg/l

Huevos /1000

|                                         | Sitio        | Entrada    |            |                                                                |            |
|-----------------------------------------|--------------|------------|------------|----------------------------------------------------------------|------------|
|                                         | N°Análisis   | 1107       | 1341       | 1550                                                           | 1852       |
|                                         | Matriz       | LC         | LC         | LC                                                             | LC         |
|                                         | Fecha        | 01-02-2016 | 10-02-2016 | 15-02-2016                                                     | 22-02-2016 |
|                                         | Hora         | 12:30      | 12:45      | 12:05                                                          | 11:40      |
|                                         | Tipo Muestra | Р          | Р          | PE                                                             | Р          |
| Jmedida                                 |              |            |            |                                                                |            |
| unidad de pH                            |              | 8.1        | 7.4        | 7.4                                                            | 7.8        |
| μS/cm                                   |              | 1330       | 1440       | 1510                                                           | 1550       |
| ml/l                                    |              |            |            | 2.5                                                            |            |
| ml/l                                    |              |            |            | 3.0                                                            |            |
| mg/l                                    |              |            |            | 150                                                            |            |
| mg/l                                    |              |            |            | 33                                                             |            |
| mg/l                                    |              |            |            | 117                                                            |            |
| mg/l                                    |              |            |            | 360                                                            |            |
| mg/l                                    |              |            |            | 13.8                                                           |            |
| mg/l                                    |              |            |            | 27.4                                                           |            |
| mg/l                                    |              |            |            | <0.01                                                          |            |
| mg/l                                    |              |            |            | 144                                                            |            |
| mg/l                                    |              | 198        | 254        | 346                                                            | 217        |
| NMP/100 ml                              |              |            | 2.40E07    | 4.60E07                                                        | 1.50E07    |
| mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l |              | 198        |            | 150<br>33<br>117<br>360<br>13.8<br>27.4<br><0.01<br>144<br>346 |            |

13

<0.4

< 0.01

< 0.050

<0.050

<0.005

1853

LC

12:00

2071

LC

17:00

22-02-2016 25-02-2016



#### **DEPARTAMENTO LABORATORIO** INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

1342

LC

1551

LC

**Establecimiento: SAN MARTÍN** 

Punto: PM05

Sitio

N°Análisis

Matriz

Salida

1108

LC

|       |                                  |              | Width        |            |            |            |            |     |
|-------|----------------------------------|--------------|--------------|------------|------------|------------|------------|-----|
|       |                                  |              | Fecha        | 01-02-2016 | 10-02-2016 | 15-02-2016 | 18-02-2016 | •   |
|       |                                  |              | Hora         | 12:40      | 12:40      | 11:55      | 12:55      |     |
|       |                                  |              | Tipo Muestra | Р          | Р          | PE         | Р          |     |
| orden | Determinacion                    | Umedida      |              | Velo       | Motor      | Maler      | Valor      | 130 |
| 90    | рН                               | unidad de pH |              | 7.9        | 8.0        | 7.7        | 7.9        | Г   |
| 31    | Conductividad                    | μS/cm        |              | 1590       | 1570       | 1580       | 1630       | Г   |
| 60    | Sólidos sedimentables en 10 min. | ml/l         |              |            |            | 0.1        |            | Г   |
| 70    | Sólidos sedimentables en 2 hs    | ml/l         |              |            |            | 0.1        |            | Г   |
| 80    | Sólidos en suspensión totales    | mg/l         |              |            |            | 67         |            |     |
| 90    | Sólidos en suspensión fijos      | mg/l         |              |            |            | 7          |            |     |
| 100   | Sólidos en suspensión volátiles  | mg/l         |              |            |            | 60         |            |     |
| 110   | Cloruros (CL-)                   | mg/l         |              |            |            | 146        |            |     |
| 130   | Alcalinidad                      | mg/l         |              |            |            | 260        |            |     |
| 140   | Dureza total                     | mg/l         |              |            |            | 373        |            |     |
| 150   | Dureza cálcica                   | mg/l         |              |            |            | 321        |            |     |
| 150   | Calcio (Ca++)                    | mg/l         |              |            |            | 128        |            |     |
| 200   | Magnesio (Mg++)                  | mg/l         |              |            |            | 13         |            |     |
| 220   | SODIO                            | mg/l         |              |            |            | 152        |            |     |
| 240   | POTASIO                          | mg/l         |              |            |            | 26         |            |     |
| 265   | R.A.S.                           | N°           |              |            |            | 3.42       |            |     |
| 270   | Sulfuros totales (S=)            | mg/l         |              |            |            | <0.2       |            |     |
| 300   | Nitrógeno amoniacal (N-NH3)      | mg/l         |              |            |            | 19.0       |            |     |
| 310   | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              |            |            | 0.06       |            | L   |
| 360   | D.B.O. ( 5 días, 20℃)            | mg/l         |              |            |            | 38         |            | L   |
| 370   | D.Q.O.                           | mg/l         |              | 208        | 230        | 176        | 184        |     |
| 540   | Escherichia coli                 | NMP/100 ml   |              |            | 1.10E04    | 2.40E03    | 7.50E02    |     |
| 550   | Huevos de Helmintos              | Huevos /1000 | ı            |            |            | <1         |            | Ĺ   |
| 570   | PLOMO                            | mg/l         |              |            |            | <0.4       |            |     |
| 580   | CADMIO                           | mg/l         |              |            |            | <0.01      |            |     |
| 500   | CROMO                            | mg/l         |              |            |            | <0.050     |            | L   |
| 500   | ARSÉNICO                         | mg/l         |              |            |            | <0.050     |            | L   |
| 620   | MERCURIO                         | mg/l         |              |            |            | <0.005     |            | L   |
|       |                                  |              |              |            |            |            |            |     |

|       | _       |         |         |         |         |         |
|-------|---------|---------|---------|---------|---------|---------|
| Р     | Р       | PE      | Р       | DU      | Р       | Р       |
| Water | Value   | Maler   | Valor   | Volor   | Valor   | Nator   |
| 7.9   | 8.0     | 7.7     | 7.9     |         | 8.4     | 7.9     |
| 1590  | 1570    | 1580    | 1630    |         | 1640    | 1610    |
|       |         | 0.1     |         |         |         |         |
|       |         | 0.1     |         |         |         |         |
|       |         | 67      |         |         |         |         |
|       |         | 7       |         |         |         |         |
|       |         | 60      |         |         |         |         |
|       |         | 146     |         |         |         |         |
|       |         | 260     |         |         |         |         |
|       |         | 373     |         |         |         |         |
|       |         | 321     |         |         |         |         |
|       |         | 128     |         |         |         |         |
|       |         | 13      |         |         |         |         |
|       |         | 152     |         |         |         |         |
|       |         | 26      |         |         |         |         |
|       |         | 3.42    |         |         |         |         |
|       |         | <0.2    |         |         |         |         |
|       |         | 19.0    |         |         |         |         |
|       |         | 0.06    |         |         |         |         |
|       |         | 38      |         |         |         |         |
| 208   | 230     | 176     | 184     |         | 219     | 201     |
|       | 1.10E04 | 2.40E03 | 7.50E02 | 9.30E02 | 7.50E02 | 2.40E03 |
|       |         | <1      |         |         |         |         |
|       |         | <0.4    |         |         |         |         |
|       |         | <0.01   |         | İ       |         |         |
|       |         | <0.050  |         | İ       |         |         |
|       |         | <0.050  |         |         |         |         |
|       |         | <0.005  |         | İ       |         |         |

1779

LC

1780

LC

18-02-2016

12:55



Establecimiento: SAN MARTÍN Punto: PM05

| Sitio        |            |            |  |  |  |
|--------------|------------|------------|--|--|--|
| N°Análisis   | 2072       | 2132       |  |  |  |
| Matriz       | LC         | LC         |  |  |  |
| Fecha        | 25-02-2016 | 29-02-2016 |  |  |  |
| Hora         | 17:00      | 12:10      |  |  |  |
| Tipo Muestra | DU         | Р          |  |  |  |
|              |            |            |  |  |  |

| Determinacion                    | Umedida      |
|----------------------------------|--------------|
| pH                               | unidad de pH |
| Conductividad                    | μS/cm        |
| Sólidos sedimentables en 10 min. | ml/l         |
| Sólidos sedimentables en 2 hs    | ml/l         |
| Sólidos en suspensión totales    | mg/l         |
| Sólidos en suspensión fijos      | mg/l         |
| Sólidos en suspensión volátiles  | mg/l         |
| Cloruros (CL-)                   | mg/l         |
| Alcalinidad                      | mg/l         |
| Dureza total                     | mg/l         |
| Dureza cálcica                   | mg/l         |
| Calcio (Ca++)                    | mg/l         |
| Magnesio (Mg++)                  | mg/l         |
| SODIO                            | mg/l         |
| POTASIO                          | mg/l         |
| R.A.S.                           | N°           |
| Sulfuros totales (S=)            | mg/l         |
| Nitrógeno amoniacal (N-NH3)      | mg/l         |
| Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| D.B.O. ( 5 días, 20℃)            | mg/l         |
| D.Q.O.                           | mg/l         |
| Escherichia coli                 | NMP/100 ml   |
| Huevos de Helmintos              | Huevos /1000 |
| PLOMO                            | mg/l         |
| CADMIO                           | mg/l         |
| CROMO                            | mg/l         |
| ARSÉNICO                         | mg/l         |
| MERCURIO                         | mg/l         |

| Valor   | Vision  |
|---------|---------|
|         |         |
|         | 7.7     |
|         | 1640    |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         | 182     |
| 0.40500 | 4.30E03 |
| 2.10E03 | 4.30E03 |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |



Establecimiento: SAN MARTÍN Punto: SM S1

| Sitio        | Salida de serie 1 |            |  |
|--------------|-------------------|------------|--|
| N°Análisis   | 1343              | 1552       |  |
| Matriz       | LC                | LC         |  |
| Fecha        | 10-02-2016        | 15-02-2016 |  |
| Hora         | 12:35             | 11:20      |  |
| Tipo Muestra | Р                 | PE         |  |

| Determinacion                   | Umedida      |
|---------------------------------|--------------|
| рН                              | unidad de pH |
| Conductividad                   | μS/cm        |
| Sólidos en suspensión totales   | mg/l         |
| Sólidos en suspensión fijos     | mg/l         |
| Sólidos en suspensión volátiles | s mg/l       |
| Cloruros (CL-)                  | mg/l         |
| Alcalinidad                     | mg/l         |
| Dureza total                    | mg/l         |
| Dureza cálcica                  | mg/l         |
| Calcio (Ca++)                   | mg/l         |
| Magnesio (Mg++)                 | mg/l         |
| SODIO                           | mg/l         |
| POTASIO                         | mg/l         |
| R.A.S.                          | N°           |
| Sulfuros totales (S=)           | mg/l         |
| Nitrógeno amoniacal (N-NH3)     | mg/l         |
| Nitrógeno de Nitritos (N-NO2-)  | mg/l         |
| D.B.O. ( 5 días, 20℃)           | mg/l         |
| D.Q.O.                          | mg/l         |
| Escherichia coli                | NMP/100 ml   |

| Value   | Males   |
|---------|---------|
|         |         |
| 7.9     | 7.8     |
| 1500    | 1520    |
|         | 60      |
|         | 7       |
|         | 53      |
|         | 134     |
|         | 268     |
|         | 361     |
|         | 297     |
|         | 119     |
|         | 16      |
|         | 122     |
|         | 20      |
|         | 2.79    |
|         | <0.2    |
|         | 19.6    |
|         | <0.01   |
|         | 39      |
| 214     | 184     |
| 4.60E03 | 2.40E04 |



Establecimiento: SAN MARTÍN

Punto: SM S2

| Sitio        | Salida de serie 2 |            |  |
|--------------|-------------------|------------|--|
| N°Análisis   | 1344              | 1553       |  |
| Matriz       | LC                | LC         |  |
| Fecha        | 10-02-2016        | 15-02-2016 |  |
| Hora         | 12:30             | 11:25      |  |
| Tipo Muestra | Р                 | PE         |  |
|              | Valor             | Valor      |  |

| Determinacion                   | Umedida      |
|---------------------------------|--------------|
| рН                              | unidad de pH |
| Conductividad                   | μS/cm        |
| Sólidos en suspensión totales   | mg/l         |
| Sólidos en suspensión fijos     | mg/l         |
| Sólidos en suspensión volátiles | s mg/l       |
| Cloruros (CL-)                  | mg/l         |
| Alcalinidad                     | mg/l         |
| Dureza total                    | mg/l         |
| Dureza cálcica                  | mg/l         |
| Calcio (Ca++)                   | mg/l         |
| Magnesio (Mg++)                 | mg/l         |
| SODIO                           | mg/l         |
| POTASIO                         | mg/l         |
| R.A.S.                          | N°           |
| Sulfuros totales (S=)           | mg/l         |
| Nitrógeno amoniacal (N-NH3)     | mg/l         |
| Nitrógeno de Nitritos (N-NO2-)  | mg/l         |
| D.B.O. ( 5 días, 20℃)           | mg/l         |
| D.Q.O.                          | mg/l         |
| Escherichia coli                | NMP/100 ml   |

| Valor   | Vision  |
|---------|---------|
|         |         |
| 8.4     | 8.1     |
| 1560    | 1590    |
|         | 90      |
|         | 10      |
|         | 80      |
|         | 148     |
|         | 240     |
|         | 401     |
|         | 325     |
|         | 130     |
|         | 19      |
|         | 133     |
|         | 20      |
|         | 2.88    |
|         | <0.2    |
|         | 12.3    |
|         | 0.02    |
|         | 44      |
| 221     | 215     |
| 3.50E03 | 4.60E03 |
|         |         |



Establecimiento: SAN MARTÍN

Punto: SM S3

| Sitio        | Salida de serie 3 |            |  |
|--------------|-------------------|------------|--|
| N°Análisis   | 1345              | 1554       |  |
| Matriz       | LC                | LC         |  |
| Fecha        | 10-02-2016        | 15-02-2016 |  |
| Hora         | 12:25             | 11:35      |  |
| Tipo Muestra | Р                 | PE         |  |

| lan | Determinacion                   | Umedida      |
|-----|---------------------------------|--------------|
| 20  | pH                              | unidad de pH |
| 31  | Conductividad                   | μS/cm        |
| 80  | Sólidos en suspensión totales   | mg/l         |
| 90  | Sólidos en suspensión fijos     | mg/l         |
| 100 | Sólidos en suspensión volátiles | mg/l         |
| 110 | Cloruros (CL-)                  | mg/l         |
| 130 | Alcalinidad                     | mg/l         |
| 140 | Dureza total                    | mg/l         |
| 160 | Dureza cálcica                  | mg/l         |
| 180 | Calcio (Ca++)                   | mg/l         |
| 200 | Magnesio (Mg++)                 | mg/l         |
| 220 | SODIO                           | mg/l         |
| 240 | POTASIO                         | mg/l         |
| 265 | R.A.S.                          | N°           |
| 270 | Sulfuros totales (S=)           | mg/l         |
| 300 | Nitrógeno amoniacal (N-NH3)     | mg/l         |
| 310 | Nitrógeno de Nitritos (N-NO2-)  | mg/l         |
| 360 | D.B.O. ( 5 días, 20℃)           | mg/l         |
| 370 | D.Q.O.                          | mg/l         |
| 540 | Escherichia coli                | NMP/100 ml   |

| 8.0     | 8.2     |
|---------|---------|
| 1540    | 1550    |
|         | 67      |
|         | 3       |
|         | 64      |
|         | 142     |
|         | 264     |
|         | 385     |
|         | 309     |
|         | 124     |
|         | 19      |
|         | 125     |
|         | 20      |
|         | 2.76    |
|         | <0.2    |
|         | 17.4    |
|         | <0.01   |
|         | 32      |
| 203     | 178     |
| 4.30E03 | 7.50E03 |



Establecimiento: SAN MARTÍN Punto: SM S4

| Sitio        | Salida de serie 4 |            |  |
|--------------|-------------------|------------|--|
| N°Análisis   | 1346              | 1555       |  |
| Matriz       | LC                | LC         |  |
| Fecha        | 10-02-2016        | 15-02-2016 |  |
| Hora         | 12:20             | 11:40      |  |
| Tipo Muestra | Р                 | PE         |  |

| kin | Determinacion                   | Umedida      |
|-----|---------------------------------|--------------|
| 50  | рН                              | unidad de pH |
| 31  | Conductividad                   | μS/cm        |
| 80  | Sólidos en suspensión totales   | mg/l         |
| 90  | Sólidos en suspensión fijos     | mg/l         |
| 100 | Sólidos en suspensión volátiles | mg/l         |
| 110 | Cloruros (CL-)                  | mg/l         |
| 130 | Alcalinidad                     | mg/l         |
| 140 | Dureza total                    | mg/l         |
| 160 | Dureza cálcica                  | mg/l         |
| 180 | Calcio (Ca++)                   | mg/l         |
| 200 | Magnesio (Mg++)                 | mg/l         |
| 220 | SODIO                           | mg/l         |
| 240 | POTASIO                         | mg/l         |
| 265 | R.A.S.                          | N°           |
| 270 | Sulfuros totales (S=)           | mg/l         |
| 300 | Nitrógeno amoniacal (N-NH3)     | mg/l         |
| 310 | Nitrógeno de Nitritos (N-NO2-)  | mg/l         |
| 360 | D.B.O. ( 5 días, 20℃)           | mg/l         |
| 370 | D.Q.O.                          | mg/l         |
| 540 | Escherichia coli                | NMP/100 ml   |

| 8.3     | 8.3     |
|---------|---------|
| 1640    | 1670    |
|         | 95      |
|         | 10      |
|         | 85      |
|         | 175     |
|         | 236     |
|         | 409     |
|         | 309     |
|         | 124     |
|         | 24      |
|         | 145     |
|         | 24      |
|         | 3.12    |
|         | <0.2    |
|         | 9.0     |
|         | 0.02    |
|         | 50      |
| 225     | 219     |
| 9.50E02 | 1.10E03 |
|         |         |



Establecimiento: SAN MARTÍN Punto: SM S5

| Sitio        | Salida de serie 5 |            |  |  |  |
|--------------|-------------------|------------|--|--|--|
| N°Análisis   | 1347              | 1556       |  |  |  |
| Matriz       | LC                | LC         |  |  |  |
| Fecha        | 10-02-2016        | 15-02-2016 |  |  |  |
| Hora         | 12:15             | 11:45      |  |  |  |
| Tipo Muestra | Р                 | PE         |  |  |  |
|              | Valve             | Unive      |  |  |  |

| Determinacion                   | Umedida      |
|---------------------------------|--------------|
| pH                              | unidad de pH |
| Conductividad                   | μS/cm        |
| Sólidos en suspensión totales   | mg/l         |
| Sólidos en suspensión fijos     | mg/l         |
| Sólidos en suspensión volátiles | mg/l         |
| Cloruros (CL-)                  | mg/l         |
| Alcalinidad                     | mg/l         |
| Dureza total                    | mg/l         |
| Dureza cálcica                  | mg/l         |
| Calcio (Ca++)                   | mg/l         |
| Magnesio (Mg++)                 | mg/l         |
| SODIO                           | mg/l         |
| POTASIO                         | mg/l         |
| R.A.S.                          | N°           |
| Sulfuros totales (S=)           | mg/l         |
| Nitrógeno amoniacal (N-NH3)     | mg/l         |
| Nitrógeno de Nitritos (N-NO2-)  | mg/l         |
| D.B.O. ( 5 días, 20℃)           | mg/l         |
| D.Q.O.                          | mg/l         |
| Escherichia coli                | NMP/100 ml   |

|         | Value   |
|---------|---------|
| 8.1     | 8.0     |
| 1550    | 1580    |
|         | 57      |
|         | 7       |
|         | 50      |
|         | 146     |
|         | 264     |
|         | 386     |
|         | 321     |
|         | 182     |
|         | 16      |
|         | 123     |
|         | 19      |
|         | 2.35    |
|         | <0.2    |
|         | 17.4    |
|         | <0.01   |
|         | 28      |
| 193     | 157     |
| 1.10E03 | 4.30E03 |



1407

LC

1714

LC

1991

LC

**Establecimiento: SAN RAFAEL (LAGUNA)** 

Punto: PM43

**Entrada** 

1126

LC

Sitio

N°Análisis

Matriz

| n   | Determinacion                    | Umedida      |
|-----|----------------------------------|--------------|
|     | pH                               | unidad de pH |
| 31  | Conductividad                    | μS/cm        |
| 60  | Sólidos sedimentables en 10 min. | ml/l         |
| 70  | Sólidos sedimentables en 2 hs    | ml/l         |
| 80  | Sólidos en suspensión totales    | mg/l         |
|     | Sólidos en suspensión fijos      | mg/l         |
| 100 | Sólidos en suspensión volátiles  | mg/l         |
|     | Alcalinidad                      | mg/l         |
|     | Sulfuros totales (S=)            | mg/l         |
| 300 | Nitrógeno amoniacal (N-NH3)      | mg/l         |
| 310 | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |
| 360 | D.B.O. ( 5 días, 20℃)            | mg/l         |
|     | D.Q.O.                           | mg/l         |
| 540 | Escherichia coli                 | NMP/100 ml   |
| 100 | Huevos de Helmintos              | Huevos /1000 |
| 570 | PLOMO                            | mg/l         |
| 580 | CADMIO                           | mg/l         |
| 500 | CROMO                            | mg/l         |
| 500 | ARSÉNICO                         | mg/l         |
|     | MERCURIO                         | mg/l         |

| Fecha        | 01-02-2016 | 10-02-2016 | 17-02-2016 | 24-02-2016 |
|--------------|------------|------------|------------|------------|
| Hora         | 11:00      | 13:20      | 12:40      | 11:10      |
| Tipo Muestra | Р          | PE         | Р          | Р          |
|              | - Nation   | Valor      | Malar      | Valor      |
|              | 7.4        | 6.8        | 7.1        | 7.2        |
|              | 2090       | 1330       | 1990       | 1960       |
|              |            | 2.0        |            |            |
|              |            | 3.5        |            |            |
|              |            | 210        |            |            |
|              |            | 80         |            |            |
|              |            | 130        |            |            |
|              |            | 200        |            |            |
|              |            | 1.9        |            |            |
|              |            | 29.1       |            |            |
|              |            | <0.01      |            |            |
|              |            | 140        |            |            |
|              | 412        | 395        | 378        | 293        |
|              |            | 3.50E07    | 2.80E07    | 1.10E07    |
|              |            | 26         |            |            |
|              |            | <0.4       |            |            |
|              |            | <0.01      |            |            |
|              |            | <0.050     |            |            |
|              |            | <0.050     |            |            |
|              |            | <0.005     |            |            |

1564

1715



# DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

1255

1408

1478

1479

Establecimiento: SAN RAFAEL (LAGUNA)

Punto: PM44

N°Análisis

Salida

1127

Sitio

|                                  |              | Matriz       | LC         |
|----------------------------------|--------------|--------------|------------|------------|------------|------------|------------|------------|------------|
|                                  |              | Fecha        | 01-02-2016 | 04-02-2016 | 10-02-2016 | 12-02-2016 | 12-02-2016 | 15-02-2016 | 17-02-2016 |
|                                  |              | Hora         | 11:20      | 08:00      | 13:40      | 09:20      | 09:20      | 11:10      | 13:00      |
|                                  |              | Tipo Muestra | Р          | Р          | PE         | Р          | DU         | Р          | Р          |
| Determinacion                    | Umedida      |              | Mile       | Value      | West       | Valor      | Voley      | Velor      | Mor        |
| pH                               | unidad de pH |              | 7.5        | 7.3        | 7.5        | 7.2        |            | 7.0        | 7.2        |
| Conductividad                    | μS/cm        |              | 1890       | 1850       | 1760       | 1760       |            | 1780       | 1870       |
| Sólidos sedimentables en 10 min. | ml/l         |              |            |            | <0.1       |            |            |            |            |
| Sólidos sedimentables en 2 hs    | ml/l         |              |            |            | 0.1        |            |            |            |            |
| Sólidos en suspensión totales    | mg/l         |              |            |            | 150        |            |            |            |            |
| Sólidos en suspensión fijos      | mg/l         |              |            |            | 13         |            |            |            |            |
| Sólidos en suspensión volátiles  | mg/l         |              |            |            | 137        |            |            |            |            |
| Cloruros (CL-)                   | mg/l         |              |            |            | 249        |            |            |            |            |
| Alcalinidad                      | mg/l         |              |            |            | 284        |            |            |            |            |
| Dureza total                     | mg/l         |              |            |            | 385        |            |            |            |            |
| Dureza cálcica                   | mg/l         |              |            |            | 345        |            |            |            |            |
| Calcio (Ca++)                    | mg/l         |              |            |            | 138        |            |            |            |            |
| Magnesio (Mg++)                  | mg/l         |              |            |            | 10         |            |            |            |            |
| SODIO                            | mg/l         |              |            |            | 147        |            |            |            |            |
| POTASIO                          | mg/l         |              |            |            | 19         |            |            |            |            |
| R.A.S.                           | N°           |              |            |            | 3.26       |            |            |            |            |
| Sulfuros totales (S=)            | mg/l         |              |            |            | <0.2       |            |            |            |            |
| Nitrógeno amoniacal (N-NH3)      | mg/l         |              |            |            | 28.0       |            |            |            |            |
| Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              |            |            | <0.01      |            |            |            |            |
| D.B.O. ( 5 días, 20℃)            | mg/l         |              |            |            | 53         |            |            |            |            |
| D.Q.O.                           | mg/l         |              | 330        | 337        | 286        | 299        |            | 291        | 294        |
| Escherichia coli                 | NMP/100 ml   |              |            |            | 1.10E04    | 7.50E05    | 4.60E05    | 1.10E06    | 4.30E05    |
| Huevos de Helmintos              | Huevos /1000 |              |            |            | <1         |            |            |            |            |
| PLOMO                            | mg/l         |              |            |            | <0.4       |            |            |            |            |
| CADMIO                           | mg/l         |              |            |            | <0.01      |            |            |            |            |
| CROMO                            | mg/l         |              |            |            | <0.050     |            |            |            |            |
| ARSÉNICO                         | mg/l         |              |            |            | <0.050     |            |            |            |            |
| MERCURIO                         | mg/l         |              |            |            | <0.005     |            |            |            |            |
|                                  |              |              |            |            |            |            |            |            |            |



Establecimiento: SAN RAFAEL (LAGUNA) Punto: PM44

| Sitio        |            |            |            |  |  |  |  |
|--------------|------------|------------|------------|--|--|--|--|
| N°Análisis   | 1716       | 1890       | 1992       |  |  |  |  |
| Matriz       | LC         | LC         | LC         |  |  |  |  |
| Fecha        | 17-02-2016 | 22-02-2016 | 24-02-2016 |  |  |  |  |
| Hora         | 13:00      | 11:55      | 11:30      |  |  |  |  |
| Tipo Muestra | DU         | Р          | Р          |  |  |  |  |
|              | Valor      | Volor      | Malor      |  |  |  |  |

| _   |                                  |              |  |  |  |  |  |
|-----|----------------------------------|--------------|--|--|--|--|--|
| in  | Determinacion                    | Umedida      |  |  |  |  |  |
| 50  | рН                               | unidad de pH |  |  |  |  |  |
| 31  | Conductividad                    | μS/cm        |  |  |  |  |  |
| 60  | Sólidos sedimentables en 10 min. | ml/l         |  |  |  |  |  |
| 70  | Sólidos sedimentables en 2 hs    | ml/l         |  |  |  |  |  |
|     | Sólidos en suspensión totales    | mg/l         |  |  |  |  |  |
| 90  | Sólidos en suspensión fijos      | mg/l         |  |  |  |  |  |
| 100 | Sólidos en suspensión volátiles  | mg/l         |  |  |  |  |  |
| 110 | Cloruros (CL-)                   | mg/l         |  |  |  |  |  |
| 130 | Alcalinidad                      | mg/l         |  |  |  |  |  |
|     | Dureza total                     | mg/l         |  |  |  |  |  |
| 160 | Dureza cálcica                   | mg/l         |  |  |  |  |  |
| 180 | Calcio (Ca++)                    | mg/l         |  |  |  |  |  |
| 200 | Magnesio (Mg++)                  | mg/l         |  |  |  |  |  |
| 220 | SODIO                            | mg/l         |  |  |  |  |  |
| 240 | POTASIO                          | mg/l         |  |  |  |  |  |
| 265 | R.A.S.                           | N°           |  |  |  |  |  |
| 270 | Sulfuros totales (S=)            | mg/l         |  |  |  |  |  |
| 300 | Nitrógeno amoniacal (N-NH3)      | mg/l         |  |  |  |  |  |
| 310 | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |  |  |  |  |  |
| 350 | D.B.O. ( 5 días, 20℃)            | mg/l         |  |  |  |  |  |
| 370 | D.Q.O.                           | mg/l         |  |  |  |  |  |
| 540 | Escherichia coli                 | NMP/100 ml   |  |  |  |  |  |
| 560 | Huevos de Helmintos              | Huevos /1000 |  |  |  |  |  |
| 570 | PLOMO                            | mg/l         |  |  |  |  |  |
| 580 | CADMIO                           | mg/l         |  |  |  |  |  |
| 500 | CROMO                            | mg/l         |  |  |  |  |  |
| 600 | ARSÉNICO                         | mg/l         |  |  |  |  |  |
|     | MERCURIO                         | mg/l         |  |  |  |  |  |
|     |                                  |              |  |  |  |  |  |

|         | 7.2     | 7.3     |
|---------|---------|---------|
|         | 1870    | 1870    |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         | 276     | 289     |
| 9.30E05 | 2.40E05 | 2.10E05 |
|         |         |         |
|         |         |         |
| ·       |         |         |
|         |         |         |
|         |         |         |
|         |         |         |



Establecimiento: SAN RAFAEL (SEDIMENTADORES) Punto: PM30

|       |                                  |              | Sitio        | Entrada    |            |            |            |
|-------|----------------------------------|--------------|--------------|------------|------------|------------|------------|
|       |                                  |              | N°Análisis   | 1128       | 1409       | 1717       | 1993       |
|       |                                  |              | Matriz       | LC         | LC         | LC         | LC         |
|       |                                  |              | Fecha        | 01-02-2016 | 10-02-2016 | 17-02-2016 | 24-02-2016 |
|       |                                  |              | Hora         | 11:50      | 14:10      | 12:00      | 11:50      |
|       |                                  |              | Tipo Muestra | Р          | PE         | Р          | Р          |
| Inden | Determinacion                    | Umedida      | J            | - Value    | Valor      | Malor      | Volor      |
|       | pН                               | unidad de pH |              | 7.1        | 6.8        | 7.1        | 7.1        |
| 3     | Conductividad                    | μS/cm        |              | 2230       | 1700       | 2110       | 2080       |
| 0     | Sólidos sedimentables en 10 min. | ml/l         |              |            | 3.0        |            |            |
| 7     | Sólidos sedimentables en 2 hs    | ml/l         |              |            | 5.0        |            |            |
| 0     | Sólidos en suspensión totales    | mg/l         |              |            | 260        |            |            |
| 9     | Sólidos en suspensión fijos      | mg/l         |              |            | 90         |            |            |
| 100   | Sólidos en suspensión volátiles  | mg/l         |              |            | 170        |            |            |
| 36    | D.B.O. ( 5 días, 20℃)            | mg/l         |              |            | 197        |            |            |
| 371   | D.Q.O.                           | mg/l         |              | 507        | 441        | 443        | 536        |
| 54    | Escherichia coli                 | NMP/100 ml   |              |            | 2.10E07    | 3.50E07    | 3.50E07    |
| 56    | Huevos de Helmintos              | Huevos /1000 | r            |            | 19         |            |            |
| 571   | PLOMO                            | mg/l         |              |            | <0.4       |            |            |
| 581   | CADMIO                           | mg/l         |              |            | <0.01      |            |            |
| 500   | CROMO                            | mg/l         |              |            | <0.050     |            |            |
| 600   | ARSÉNICO                         | mg/l         |              |            | <0.050     |            |            |
| 625   | MERCURIO                         | mg/l         |              |            | <0.005     |            |            |



Establecimiento: SAN RAFAEL (SEDIMENTADORES) Punto: PM32

| Sitio        | Salida     |            |            |            |
|--------------|------------|------------|------------|------------|
| N°Análisis   | 1129       | 1410       | 1718       | 1994       |
| Matriz       | LC         | LC         | LC         | LC         |
| Fecha        | 01-02-2016 | 10-02-2016 | 17-02-2016 | 24-02-2016 |
| Hora         | 12:10      | 14:30      | 12:15      | 12:20      |
| Tipo Muestra | Р          | PE         | Р          | Р          |
|              | Valor      | Valor      | Malor      | Volce      |

| Determinacion                    | Umedida                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                               | unidad de pH                                                                                                                                                                                                                                                                                                                                                           |
| Conductividad                    | μS/cm                                                                                                                                                                                                                                                                                                                                                                  |
| Sólidos sedimentables en 10 min. | ml/l                                                                                                                                                                                                                                                                                                                                                                   |
| Sólidos sedimentables en 2 hs    | ml/l                                                                                                                                                                                                                                                                                                                                                                   |
| Sólidos en suspensión totales    | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| Sólidos en suspensión fijos      | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| Sólidos en suspensión volátiles  | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| Cloruros (CL-)                   | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| Dureza total                     | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| Dureza cálcica                   | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| Calcio (Ca++)                    | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| Magnesio (Mg++)                  | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| SODIO                            | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| POTASIO                          | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| R.A.S.                           | N°                                                                                                                                                                                                                                                                                                                                                                     |
| D.B.O. ( 5 días, 20℃)            | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| D.Q.O.                           | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| Escherichia coli                 | NMP/100 ml                                                                                                                                                                                                                                                                                                                                                             |
| Huevos de Helmintos              | Huevos /1000                                                                                                                                                                                                                                                                                                                                                           |
| PLOMO                            | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| CADMIO                           | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| CROMO                            | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| ARSÉNICO                         | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
| MERCURIO                         | mg/l                                                                                                                                                                                                                                                                                                                                                                   |
|                                  | pH Conductividad Sólidos sedimentables en 10 min. Sólidos sedimentables en 2 hs Sólidos en suspensión totales Sólidos en suspensión fijos Sólidos en suspensión volátiles Cloruros (CL-) Dureza total Dureza cálcica Calcio (Ca++) Magnesio (Mg++) SODIO POTASIO R.A.S. D.B.O. ( 5 días, 20°C) D.Q.O. Escherichia coli Huevos de Helmintos PLOMO CADMIO CROMO ARSÉNICO |

| <u>'</u> | ' -     | •       | •       |
|----------|---------|---------|---------|
| Valor    | Valor   | Malor   | Valor   |
| 7.2      | 6.8     | 7.1     | 7.1     |
| 2250     | 1710    | 2070    | 2060    |
|          | 3.0     |         |         |
|          | 5.0     |         |         |
|          | 280     |         |         |
|          | 90      |         |         |
|          | 190     |         |         |
|          | 201     |         |         |
|          | 405     |         |         |
|          | 337     |         |         |
|          | 135     |         |         |
|          | 17      |         |         |
|          | 142     |         |         |
|          | 18      |         |         |
|          | 3.06    |         |         |
|          | 185     |         |         |
| 516      | 432     | 456     | 489     |
|          | 1.50E05 | 1.10E06 | 1.10E07 |
|          | 11      |         |         |
|          | <0.4    |         |         |
|          | <0.01   |         |         |
|          | <0.050  |         |         |
|          | <0.050  |         |         |
|          | -0.00E  |         |         |



Determinacion

Conductividad

Sólidos sedimentables en 10 min.

Sólidos sedimentables en 2 hs Sólidos en suspensión totales

Sólidos en suspensión volátiles

Sólidos en suspensión fijos

D.B.O. (5 días, 20℃)

Sustancias Fenólicas

Hidrocarburos

Escherichia coli

Plaguicidas y Herbicidas

рΗ

D.Q.O.

C.O.V.

PLOMO

CADMIO

CROMO

ARSÉNICO

**MERCURIO** 

#### **DEPARTAMENTO LABORATORIO** INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES FEBRERO 2016

**Establecimiento: TUNUYÁN** Punto: PM24

mg/l

mg/l

mg/l

|              | Sitio        | Entrada                                      |            |            |            |
|--------------|--------------|----------------------------------------------|------------|------------|------------|
|              | N°Análisis   | 1214                                         | 1419       | 1605       | 2029       |
|              | Matriz       | LC                                           | LC         | LC         | LC         |
|              | Fecha        | 03-02-2016                                   | 11-02-2016 | 16-02-2016 | 25-02-2016 |
|              | Hora         | 19:00                                        | 13:30      | 17:30      | 13:00      |
|              | Tipo Muestra | PE                                           | Р          | Р          | Р          |
| Umedida      | JI           |                                              | Voles      | Voles      | Visite     |
| unidad de pH |              | 7.1                                          | 7.4        | 7.2        | 7.4        |
| μS/cm        |              | 1140                                         | 1180       | 1100       | 1540       |
| ml/l         |              | 2.0                                          |            |            |            |
| ml/l         |              | 2.5                                          |            |            |            |
| mg/l         |              | 135                                          |            |            |            |
| mg/l         |              | 30                                           |            |            |            |
| mg/l         |              | 105                                          |            |            |            |
| mg/l         |              | 139                                          |            |            |            |
| mg/l         |              | 376                                          | 382        | 482        | 256        |
| μg/l         |              | <lm< td=""><td></td><td></td><td></td></lm<> |            |            |            |
| mg/l         |              | <0,05                                        |            |            |            |
| mg/l         |              | <0,5                                         |            |            |            |
| μg/l         |              | <lm< td=""><td></td><td></td><td></td></lm<> |            |            |            |
| NMP/100 ml   |              |                                              | 3.50E07    | 4.60E04    | 2.10E07    |
| mg/l         |              | <0.4                                         |            |            |            |
| mg/l         |              | <0.01                                        |            |            |            |

< 0.050

< 0.050

<0.005



Establecimiento: TUNUYÁN Punto: PM27

| N°Análisis         1420         1421         1607         1608         1777           Matriz         LC         LC         LC         LC         LC           Fecha         11-02-2016         11-02-2016         16-02-2016         16-02-2016         18-02-2016         03-02-           Hora         14:20         14:20         18:00         18:00         14:05 |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Fecha 11-02-2016 11-02-2016 16-02-2016 16-02-2016 18-02-2016 03-02-                                                                                                                                                                                                                                                                                                    |                |
|                                                                                                                                                                                                                                                                                                                                                                        | LC             |
| Hora 14:20 14:20 18:00 18:00 14:05                                                                                                                                                                                                                                                                                                                                     | 016 23-02-2016 |
|                                                                                                                                                                                                                                                                                                                                                                        |                |
| Tipo Muestra P DU P DU P PE                                                                                                                                                                                                                                                                                                                                            | Р              |
| Determinacion Umedida                                                                                                                                                                                                                                                                                                                                                  | Voles          |
| pH unidad de pH 7.9 8.2 7.9                                                                                                                                                                                                                                                                                                                                            |                |
| Conductividad μS/cm 1550 1470 1400                                                                                                                                                                                                                                                                                                                                     |                |
| D.Q.O. mg/l 135 130 146                                                                                                                                                                                                                                                                                                                                                |                |
| Escherichia coli NMP/100 ml 1.10E04 9.30E03 4.60E03 4.30E03 9.30E02                                                                                                                                                                                                                                                                                                    |                |
|                                                                                                                                                                                                                                                                                                                                                                        |                |



| Establecimiento: TUNUYÁN Punto: PM27 |              |              |            |
|--------------------------------------|--------------|--------------|------------|
|                                      |              | Sitio        |            |
|                                      |              | N°Análisis   |            |
|                                      |              | Matriz       |            |
|                                      |              | Fecha        | 25-02-2016 |
|                                      |              | Hora         |            |
|                                      |              | Tipo Muestra | Р          |
| Determinacion                        | Umedida      |              | - Video    |
| рН                                   | unidad de pH |              |            |
| Conductividad                        | μS/cm        |              |            |
| D.Q.O.                               | mg/l         |              |            |
| Escherichia coli                     | NMP/100 ml   |              |            |
|                                      |              |              |            |



| Establecimiento: TUNUYÁN | Punto: TU AC |
|--------------------------|--------------|
|--------------------------|--------------|

|      |               |         | Sitio        | Salida ger | neral antes |
|------|---------------|---------|--------------|------------|-------------|
|      |               |         | N°Análisis   |            |             |
|      |               |         | Matriz       | L          | С           |
|      |               |         | Fecha        | 03-02-2016 | 25-02-2016  |
|      |               |         | Hora         |            |             |
|      |               |         | Tipo Muestra | Р          | Р           |
| den  | Determinacion | Umedida |              | - Victor   | Valor       |
| 1000 |               |         |              |            |             |
|      |               |         |              |            |             |



Establecimiento: USPALLATA Punto: PM33

|                                  |                                                                                                                                                                                                                                                                                                                                                                    | N°Análisis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1613                                          |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                  |                                                                                                                                                                                                                                                                                                                                                                    | Matriz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LC                                            |
|                                  |                                                                                                                                                                                                                                                                                                                                                                    | Fecha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16-02-2016                                    |
|                                  |                                                                                                                                                                                                                                                                                                                                                                    | Hora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13:00                                         |
|                                  |                                                                                                                                                                                                                                                                                                                                                                    | Tipo Muestra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PE                                            |
| Determinacion                    | Umedida                                                                                                                                                                                                                                                                                                                                                            | JI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |
| рН                               | unidad de pH                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.4                                           |
| Conductividad                    | μS/cm                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 810                                           |
| Sólidos sedimentables en 10 min. | ml/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0                                           |
| Sólidos sedimentables en 2 hs    | ml/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0                                           |
| Sólidos en suspensión totales    | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 162                                           |
| Sólidos en suspensión fijos      | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                            |
| Sólidos en suspensión volátiles  | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 131                                           |
| Alcalinidad                      | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 248                                           |
| Sulfuros totales (S=)            | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.2                                          |
| Nitrógeno amoniacal (N-NH3)      | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.3                                          |
| Nitrógeno de Nitritos (N-NO2-)   | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                         |
| D.B.O. ( 5 días, 20℃)            | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178                                           |
| D.Q.O.                           | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 364                                           |
| Escherichia coli                 | NMP/100 ml                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.50E07                                       |
| Huevos de Helmintos              | Huevos /1000                                                                                                                                                                                                                                                                                                                                                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                            |
| PLOMO                            | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.4                                          |
| CADMIO                           | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                         |
| CROMO                            | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.050                                        |
| ARSÉNICO                         | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.050                                        |
| MERCURIO                         | mg/l                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.005                                        |
|                                  | Conductividad Sólidos sedimentables en 10 min. Sólidos sedimentables en 2 hs Sólidos en suspensión totales Sólidos en suspensión fijos Sólidos en suspensión volátiles Alcalinidad Sulfuros totales (S=) Nitrógeno amoniacal (N-NH3) Nitrógeno de Nitritos (N-NO2-) D.B.O. ( 5 días, 20°C) D.Q.O. Escherichia coli Huevos de Helmintos PLOMO CADMIO CROMO ARSÉNICO | pH unidad de pH Conductividad µS/cm Sólidos sedimentables en 10 min. ml/l Sólidos sedimentables en 2 hs ml/l Sólidos en suspensión totales mg/l Sólidos en suspensión fijos mg/l Sólidos en suspensión volátiles mg/l Alcalinidad mg/l Sulfuros totales (S=) mg/l Nitrógeno amoniacal (N-NH3) mg/l Nitrógeno de Nitritos (N-NO2-) mg/l D.B.O. ( 5 días, 20°C) mg/l D.Q.O. mg/l Escherichia coli NMP/100 ml Huevos de Helmintos Huevos /1000 PLOMO mg/l CADMIO mg/l CROMO mg/l ARSÉNICO mg/l | Matriz Fecha Hora Tipo Muestra  Determinacion |

Sitio

**Entrada** 



Establecimiento: USPALLATA Punto: PM41

|     |                                  |              | N°Análisis   | 1614       |
|-----|----------------------------------|--------------|--------------|------------|
|     |                                  |              | Matriz       | LC         |
|     |                                  |              | Fecha        | 16-02-2016 |
|     |                                  |              | Hora         | 13:10      |
|     |                                  |              | Tipo Muestra | PE         |
|     | Determinacion                    | Umedida      | ,            | Water      |
|     | pH                               | unidad de pH |              | 8.0        |
|     | Conductividad                    | uS/cm        |              | 580        |
| 20  | Sólidos sedimentables en 10 min. | ml/l         |              | <0.1       |
| ۰   | Sólidos sedimentables en 2 hs    | ml/l         |              | <0.1       |
| 100 | Sólidos en suspensión totales    | mg/l         |              | 100        |
| 20  | Sólidos en suspensión fijos      | mg/l         |              | ND         |
| 0   | Sólidos en suspensión volátiles  | mg/l         |              | 100        |
| 0   | Cloruros (CL-)                   | mg/l         |              | 36         |
| 0   | Alcalinidad                      | mg/l         |              | 172        |
| 0   | Dureza total                     | mg/l         |              | 130        |
| 0   | Dureza cálcica                   | mg/l         |              | 108        |
| 0   | Calcio (Ca++)                    | mg/l         |              | 43         |
| 0   | Magnesio (Mg++)                  | mg/l         |              | 5          |
| 0   | SODIO                            | mg/l         |              | 53         |
| 0   | POTASIO                          | mg/l         |              | 10         |
| 8   | R.A.S.                           | N°           |              | 2.04       |
| 0   | Sulfuros totales (S=)            | mg/l         |              | <0.2       |
| 0   | Nitrógeno amoniacal (N-NH3)      | mg/l         |              | 11.8       |
| 0   | Nitrógeno de Nitritos (N-NO2-)   | mg/l         |              | <0.01      |
| o   | D.B.O. ( 5 días, 20℃)            | mg/l         |              | 50         |
| 0   | D.Q.O.                           | mg/l         |              | 194        |
| 0   | Escherichia coli                 | NMP/100 ml   |              | 1.10E04    |
| 0   | Huevos de Helmintos              | Huevos /1000 |              | <1         |
| 0   | PLOMO                            | mg/l         |              | <0.4       |
| 0   | CADMIO                           | mg/l         |              | <0.01      |
| Ĭ   |                                  |              |              | 0.050      |

mg/l

mg/l

mg/l

Sitio

Salida (cá

< 0.050

< 0.050

<0.005

CROMO

ARSÉNICO

MERCURIO



| Establecimiento: VILLA TULUMAYA | Punto: PM18 |
|---------------------------------|-------------|
|---------------------------------|-------------|

|     |                  |              | Sitio        | Entrada    |            |            |
|-----|------------------|--------------|--------------|------------|------------|------------|
|     |                  |              | N°Análisis   | 1477       | 1713       | 2009       |
|     |                  |              | Matriz       | LC         | LC         | LC         |
|     |                  |              | Fecha        | 12-02-2016 | 17-02-2016 | 24-02-2016 |
|     |                  |              | Hora         | 12:10      | 14:45      | 14:10      |
|     |                  |              | Tipo Muestra | Р          | Р          | Р          |
| Sen | Determinacion    | Umedida      |              | Valor      | Valor      | Valor      |
| 9   | pH               | unidad de pH |              | 7.0        | 7.3        | 7.5        |
| 3   | Conductividad    | μS/cm        |              | 1460       | 1680       | 1650       |
| 371 | D.Q.O.           | mg/l         |              | 403        | 430        | 455        |
| 54  | Escherichia coli | NMP/100 ml   |              | 2.10E07    | 7.50E07    | 2.10E07    |
|     |                  |              |              |            |            |            |