

Establecimiento: CAMPO ESPEJO Punto: PM19

Sitio	Entrada			
N°Análisis	193	524	675	863
Matriz	LC	LC	LC	LC
Fecha	07-01-2019	15-01-2019	18-01-2019	23-01-2019
Hora	18:10	11:10	11:50	17:45
Tipo Muestra	Р	Р	Р	PE
	Ville	Valor	Malar	Valor

in.	Determinacion	Umedida
50	рН	unidad de pH
31	Conductividad	μS/cm
60	Sólidos sedimentables en 10 min.	ml/l
70	Sólidos sedimentables en 2 hs	ml/l
80	Sólidos en suspensión totales	mg/l
90	Sólidos en suspensión fijos	mg/l
100	Sólidos en suspensión volátiles	mg/l
120	Sulfatos (SO4=)	mg/l
130	Alcalinidad	mg/l
270	Sulfuros totales (S=)	mg/l
300	Nitrógeno amoniacal (N-NH3)	mg/l
310	Nitrógeno de Nitritos (N-NO2-)	mg/l
350	D.B.O. (5 días, 20℃)	mg/l
370	D.Q.O.	mg/l
420	Fósforo total (PO4-3)	mg/l
534	Plaguicidas y Herbicidas	μg/l
536	Sustancias Fenólicas	mg/l
538	Hidrocarburos	mg/l
530	C.O.V.	μg/l
540	Escherichia coli	NMP/100 ml
500	Huevos de Helmintos	Huevos /1000

- 100	The state of the s	No.	- No.
7.2	7.1	6.9	7.2
1440	1230	1210	1270
			3.5
			4.5
			186
			43
			143
			300
			200
			9.9
			25.8
			<0.01
			205
352	230	282	407
			11.6
			<lm< td=""></lm<>
			<0,05
			<0,5
			<lm< td=""></lm<>
1.20E07	1.60E07	2.40E07	3.50E07
			11

Establecimiento: CAMPO ESPEJO Punto: PM20

Sitio	Salida						
N°Análisis	47	48	194	325	525	676	864
Matriz	LC						
Fecha	02-01-2019	02-01-2019	07-01-2019	10-01-2019	15-01-2019	18-01-2019	23-01-2019
Hora	17:30	17:30	18:45	11:35	11:45	12:20	18:35
Tipo Muestra	Р	DU	Р	Р	Р	Р	PE
	Males	United	Makey	United	Males	Valor	Males

ion	Determinacion	Umedida
10	рН	unidad de pH
31	Conductividad	μS/cm
60	Sólidos sedimentables en 10 min.	ml/l
70	Sólidos sedimentables en 2 hs	ml/l
80	Sólidos en suspensión totales	mg/l
90	Sólidos en suspensión fijos	mg/l
100	Sólidos en suspensión volátiles	mg/l
110	Cloruros (CL-)	mg/l
120	Sulfatos (SO4=)	mg/l
130	Alcalinidad	mg/l
140	Dureza total	mg/l
160	Dureza cálcica	mg/l
180	Calcio (Ca++)	mg/l
200	Magnesio (Mg++)	mg/l
270	Sulfuros totales (S=)	mg/l
300	Nitrógeno amoniacal (N-NH3)	mg/l
310	Nitrógeno de Nitritos (N-NO2-)	mg/l
360	D.B.O. (5 días, 20℃)	mg/l
365	D.B.O. Soluble	mg/l
370	D.Q.O.	mg/l
415	D.Q.O. Soluble	mg/l
420	Fósforo total (PO4-3)	mg/l
534	Plaguicidas y Herbicidas	μg/l
536	Sustancias Fenólicas	mg/l
538	Hidrocarburos	mg/l
530	C.O.V.	μg/l
540	Escherichia coli	NMP/100 ml
500	Huevos de Helmintos	Huevos /1000

Valor	Valor	Valor	Volor	Valor	Valor	Valor
7.8		8.1	7.8	7.6	7.7	7.9
1360		1300	1440	1380	1370	1260
						0.5
						0.2
						48
						7
						41
						134
						350
						244
						434
						339
						136
						23
						4.2
						19.6
						0.28
						22
						8
140		140	144	142	129	95
						49
						9.0
						<lm< td=""></lm<>
						<0,05
				İ		<0,5
						<lm< td=""></lm<>
4.30E02	4.30E02	7.50E02	<2	<2	1.50E03	2.40E02
				İ		<1

Establecimiento: CAMPO ESPEJO Punto: PM20

Sitio			
N°Análisis	946	1178	1179
Matriz	LC	LC	LC
Fecha	25-01-2019	31-01-2019	31-01-2019
Hora		08:45	08:45
Tipo Muestra	Р	Р	DU
	Valor	Valor	Valor

b n		L
	Determinacion	Umedida
50	pН	unidad de pH
31	Conductividad	μS/cm
60	Sólidos sedimentables en 10 min.	ml/l
70	Sólidos sedimentables en 2 hs	ml/l
80	Sólidos en suspensión totales	mg/l
90	Sólidos en suspensión fijos	mg/l
100	Sólidos en suspensión volátiles	mg/l
110	Cloruros (CL-)	mg/l
120	Sulfatos (SO4=)	mg/l
130	Alcalinidad	mg/l
140	Dureza total	mg/l
150	Dureza cálcica	mg/l
180	Calcio (Ca++)	mg/l
200	Magnesio (Mg++)	mg/l
270	Sulfuros totales (S=)	mg/l
300	Nitrógeno amoniacal (N-NH3)	mg/l
310	Nitrógeno de Nitritos (N-NO2-)	mg/l
360	D.B.O. (5 días, 20℃)	mg/l
365	D.B.O. Soluble	mg/l
370	D.Q.O.	mg/l
415	D.Q.O. Soluble	mg/l
420	Fósforo total (PO4-3)	mg/l
534	Plaguicidas y Herbicidas	μg/l
536	Sustancias Fenólicas	mg/l
538	Hidrocarburos	mg/l
530	C.O.V.	μg/l
540	Escherichia coli	NMP/100 ml
	Huevos de Helmintos	Huevos /1000

- National Control of the Control of	100m	Nation
7.8	7.7	
1380	1310	
115	133	
4.60E02	<2	<2

Determinacion

Conductividad

Escherichia coli

рΗ

D.Q.O.

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES **ENERO 2019**

Punto: PM54 **Establecimiento: CAMPO ESPEJO**

	Sitio	Salida ent	re series 6	y 7	
	N°Análisis	195	326	526	1180
	Matriz	LC	LC	LC	LC
	Fecha	07-01-2019	10-01-2019	15-01-2019	31-01-2019
	Hora	18:20	11:15	11:25	08:10
	Tipo Muestra	Р	Р	Р	Р
		Valor	Valor	Valor	Volor
Umedida					
unidad de pH		7.8	7.9	7.7	7.6
μS/cm		1300	1410	1360	1150
mg/l		144	149	151	132
NMP/100 ml		9.30E02	2.10E03	2.40E03	1.50E03

Determinacion

Conductividad

Escherichia coli

рΗ

D.Q.O.

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES **ENERO 2019**

Punto: PM55 **Establecimiento: CAMPO ESPEJO**

	Sitio	Salida ent	re series 8	y 9	
	N°Análisis	196	327	527	1181
	Matriz	LC	LC	LC	LC
	Fecha	07-01-2019	10-01-2019	15-01-2019	31-01-2019
	Hora	18:30	11:25	11:35	08:20
	Tipo Muestra	Р	Р	Р	Р
		Value	Vision	Valor	Vision
Umedida					
unidad de pH		8.1	7.8	7.8	7.7
μS/cm		1310	1440	1390	1240
mg/l		155	149	165	143
NMP/100 ml		<2	<2	<2	<2

Establecimiento: COLONIA LA	S ROSAS	Punto: PM21		
		Sitio	Entrada	
		N°Análisis		
		Matriz	L	С
		Fecha	08-01-2019	22-01-2019
		Hora		
		Tipo Muestra	PE	Р
Determinacion	Umedida		- Victor	Value
100				

Establecimiento: COSTA DE ARAUJO

Punto: PM16

Entrada

Sitio

			N°Análisis	197	528	677	869
						٠	000
			Matriz	LC	LC	LC	LC
			Fecha	07-01-2019	15-01-2019	18-01-2019	23-01-2019
			Hora	14:20	08:40	09:05	14:05
			Tipo Muestra	Р	Р	Р	PE
De	eterminacion	Umedida		- Salar	Valor	New	Valor
р	Н	unidad de pH		7.6	7.4	7.2	7.3
C	Conductividad	μS/cm		1370	1340	1350	1380
S	Sólidos sedimentables en 10 min.	ml/l					<0.1
S	Sólidos sedimentables en 2 hs	ml/l					0.4
S	Sólidos en suspensión totales	mg/l					40
S	Sólidos en suspensión fijos	mg/l					10
S	Sólidos en suspensión volátiles	mg/l					30
S	Sulfatos (SO4=)	mg/l					44
Δ	Alcalinidad	mg/l					548
S	Sulfuros totales (S=)	mg/l					67.8
N	Nitrógeno amoniacal (N-NH3)	mg/l					59.9
³¹⁰ N	Nitrógeno de Nitritos (N-NO2-)	mg/l					<0.01
360	D.B.O. (5 días, 20℃)	mg/l					158
370	D.Q.O.	mg/l		400	546	347	329
428 F	ósforo total (PO4-3)	mg/l					17.4
E	Escherichia coli	NMP/100 ml		1.50E07	1.50E07	4.60E07	9.30E07
- F	luevos de Helmintos	Huevos /1000	1				28

678

LC

870

LC

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES ENERO 2019

50

LC

198

LC

Establecimiento: COSTA DE ARAUJO

Punto: PM17

N°Análisis

Matriz

Fecha Hora Salida

49

LC

Sitio

			Tipo Muestra
1	Determinacion	Umedida	
90	pН	unidad de pH	
31	Conductividad	μS/cm	
60	Sólidos sedimentables en 10 min.	ml/l	
70	Sólidos sedimentables en 2 hs	ml/l	
80	Sólidos en suspensión totales	mg/l	
90	Sólidos en suspensión fijos	mg/l	
00	Sólidos en suspensión volátiles	mg/l	
10	Cloruros (CL-)	mg/l	
20	Sulfatos (SO4=)	mg/l	
30	Alcalinidad	mg/l	
40	Dureza total	mg/l	
	Dureza cálcica	mg/l	
	Calcio (Ca++)	mg/l	
00	Magnesio (Mg++)	mg/l	
70	Sulfuros totales (S=)	mg/l	
00	Nitrógeno amoniacal (N-NH3)	mg/l	
10	Nitrógeno de Nitritos (N-NO2-)	mg/l	
60	D.B.O. (5 días, 20℃)	mg/l	
83	D.B.O. Soluble	mg/l	
70	D.Q.O.	mg/l	
15	D.Q.O. Soluble	mg/l	
20	Fósforo total (PO4-3)	mg/l	
30	C.O.V.	μg/l	
-	Escherichia coli	NMP/100 ml	
	Huevos de Helmintos	Huevos /1000	1

14:45	14:45	14:30	09:00	08:50	09:15	14:15
Р	DU	Р	Р	Р	Р	PE
Valor	Valor	Malor	Valor	Valor	Mader	Violes
8.0		7.6	7.6	7.6	7.5	7.8
1410		1370	1470	1420	1430	1350
						<0.1
						<0.1
						100
						27
						73
						148
						220
						308
						299
						229
						92
						17
						5.0
						26.9
						0.03
						57
						17
268		248	302	326	291	214
						99
						15.9
						<lm< td=""></lm<>
2.40E03	4.60E03	9.30E03	3.50E04	9.30E02	2.40E04	7.50E02
						<1

328

LC

02-01-2019 02-01-2019 07-01-2019 10-01-2019 15-01-2019 18-01-2019 23-01-2019

529

LC

1182

LC

25-01-2019 31-01-2019 31-01-2019

11:30

1183

LC

Establecimiento: COSTA DE ARAUJO Punt

Punto: PM17

N°Análisis

Matriz

Fecha

Hora

947

LC

11:15

Sitio

		Tipo Muestra
Determinacion	Umedida	
pH	unidad de pH	
Conductividad	μS/cm	
Sólidos sedimentables en 10 min.	ml/l	
Sólidos sedimentables en 2 hs	ml/l	
Sólidos en suspensión totales	mg/l	
Sólidos en suspensión fijos	mg/l	
Sólidos en suspensión volátiles	mg/l	
Cloruros (CL-)	mg/l	
Sulfatos (SO4=)	mg/l	
Alcalinidad	mg/l	
Dureza total	mg/l	
Dureza cálcica	mg/l	
Calcio (Ca++)	mg/l	
Magnesio (Mg++)	mg/l	
Sulfuros totales (S=)	mg/l	
Nitrógeno amoniacal (N-NH3)	mg/l	
Nitrógeno de Nitritos (N-NO2-)	mg/l	
D.B.O. (5 días, 20℃)	mg/l	
D.B.O. Soluble	mg/l	
D.Q.O.	mg/l	
D.Q.O. Soluble	mg/l	
Fósforo total (PO4-3)	mg/l	
C.O.V.	μg/l	
Escherichia coli	NMP/100 ml	
Huevos de Helmintos	Huevos /1000	

	11.10	11.00	11.00		
ì	Р	Р	DU		
		Value	100		
	7.6	7.9			
	1430	1440			
	211	183			
	3.50E03	9.30E02	7.50E02		
	0.00200	0.00202	7.00202		

Establecimiento: EL PARAMILLO

Punto: PM12

N°Análisis	871 LC
Fecha 07-01-2019 15-01-2019 18-01-2019 Hora 15:45 10:00 10:20 Tipo Muestra PE P P Determinacion Umedida μS/cm 7.1 6.9 6.8 Conductividad μS/cm 1270 1360 1350 Sólidos sedimentables en 10 min. ml/l 2.5	LC
Hora 15:45 10:00 10:20 Tipo Muestra PE P P Determinacion Umedida pH unidad de pH Conductividad μS/cm 1270 1360 1350 Sólidos sedimentables en 10 min. ml/l Sólidos sedimentables en 2 hs ml/l Sólidos en suspensión totales mg/l Sólidos en suspensión volátiles mg/l Sólidos en suspensión volátiles mg/l Total 10:20 PE P P P P Total 1360 1350 To	
Tipo Muestra PE P P	23-01-2019
Determinacion	15:40
pH unidad de pH Conductividad μS/cm Sólidos sedimentables en 10 min. ml/l Sólidos sedimentables en 2 hs ml/l Sólidos en suspensión totales mg/l Sólidos en suspensión fijos mg/l Sólidos en suspensión volátiles mg/l	Р
Conductividad µS/cm 1270 1360 1350 Sólidos sedimentables en 10 min. ml/l Sólidos sedimentables en 2 hs ml/l Sólidos en suspensión totales mg/l Sólidos en suspensión fijos mg/l Sólidos en suspensión volátiles mg/l 1270 1360 1350 2.5 1311 23 108	Malar
Sólidos sedimentables en 10 min. ml/l Sólidos sedimentables en 2 hs ml/l Sólidos en suspensión totales mg/l Sólidos en suspensión fijos mg/l Sólidos en suspensión volátiles mg/l 108	6.8
Sólidos sedimentables en 2 hs ml/l Sólidos en suspensión totales mg/l Sólidos en suspensión fijos mg/l Sólidos en suspensión volátiles mg/l 108	1780
Sólidos en suspensión totales mg/l Sólidos en suspensión fijos mg/l Sólidos en suspensión volátiles mg/l 108	
Sólidos en suspensión fijos mg/l Sólidos en suspensión volátiles mg/l 108	
Sólidos en suspensión volátiles mg/l 108	
College of Suspension Volumes Ingri	
460	
Sulfatos (SO4=) mg/l 460	
Alcalinidad mg/l 272	
Sulfuros totales (S=) mg/l 7.6	
Nitrógeno amoniacal (N-NH3) mg/l 35.3	
Nitrógeno de Nitritos (N-NO2-) mg/l <0.01	
D.B.O. (5 días, 20℃) mg/l 105	
D.Q.O. mg/l 272 212 175	219
Plaguicidas y Herbicidas μg/l <lm< td=""><td></td></lm<>	
Sustancias Fenólicas mg/l <0,05	
Hidrocarburos mg/l <0,5	
C.O.V. µg/l <lm< td=""><td></td></lm<>	
Escherichia coli NMP/100 ml 4.60E07 4.30E07 2.10E0	7 4.30E07
Huevos de Helmintos Huevos /1000 19	

Determinacion

Conductividad

Escherichia coli

рΗ

D.Q.O.

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES **ENERO 2019**

Punto: PM13 **Establecimiento: EL PARAMILLO**

	Sitio	Salida can	npo este		
	N°Análisis	52	185	872	948
	Matriz	LC	LC	LC	LC
	Fecha	02-01-2019	07-01-2019	23-01-2019	25-01-2019
	Hora	15:40	15:15	15:20	08:40
	Tipo Muestra	Р	Р	Р	Р
		Valor	Valor	Valor	Valor
Umedida					
unidad de pH		7.8	7.8	8.1	8.1
μS/cm		1530	1440	1820	1490
mg/l		170	152	288	188
NMP/100 ml		7.50E02	2.40E03	4.60E02	2.10E03
μS/cm mg/l		1530 170	1440 152	1820 288	1490 188

Establecimiento: EL PARAMILLO

Punto: PM60

Huevos /1000

Sitio

		L
		-
Determinacion	Umedida	
pH	unidad de pH	
Conductividad	μS/cm	
Sólidos sedimentables en 10 min.	ml/l	
Sólidos sedimentables en 2 hs	ml/l	
Sólidos en suspensión totales	mg/l	
Sólidos en suspensión fijos	mg/l	
Sólidos en suspensión volátiles	mg/l	
Cloruros (CL-)	mg/l	
Sulfatos (SO4=)	mg/l	
Alcalinidad	mg/l	
Dureza total	mg/l	
Dureza cálcica	mg/l	
Calcio (Ca++)	mg/l	
Magnesio (Mg++)	mg/l	
Sulfuros totales (S=)	mg/l	
Nitrógeno amoniacal (N-NH3)	mg/l	
Nitrógeno de Nitritos (N-NO2-)	mg/l	
D.B.O. (5 días, 20℃)	mg/l	
D.Q.O.	mg/l	
D.Q.O. Soluble	mg/l	
Escherichia coli	NMP/100 ml	

N°Análisis	51	186	873	949
Matriz	LC	LC	LC	LC
Fecha	02-01-2019	07-01-2019	23-01-2019	25-01-2019
Hora	15:55	15:30	15:30	09:50
Tipo Muestra	Р	PE	Р	Р
	Viole	Valor	Valor	Valor
	8.5	8.6	8.8	8.0
	1400	1310	1810	1500
		<0.1		
		0.1		
		85		
		10		
		75		
		185		
		420		
		116		
		484		
		349		
		140		
		33		
		3.5		
		2.8	·	
		<0.01		
		27		

199

43

4.30E02

<1

149

4.30E01

176

2.40E03

195

9.30E02

Salida de Lagunas

Huevos de Helmintos

680

681

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES ENERO 2019

187

329

330

531

Establecimiento: EL PARAMILLO

Punto: PM61

Sitio

N°Análisis

		Matriz	LC	LC	LC	LC	LC	LC	LC
		Fecha	02-01-2019	07-01-2019	10-01-2019	10-01-2019	15-01-2019	18-01-2019	18-01-2019
		Hora	15:45	15:20	10:00	10:00	09:45	10:00	10:00
		Tipo Muestra	Р	PE	Р	DU	Р	Р	DU
Determinacion	Umedida		- Marie	Valor	Valor	Mater	Malor	Valor	Valor
pH	unidad de pH		7.8	7.9	7.8		7.6	7.5	
Conductividad	μS/cm		1530	1420	1560		1520	1490	
Sólidos sedimentables en 10 min.	ml/l			<0.1					
Sólidos sedimentables en 2 hs	ml/l			<0.1					
Sólidos en suspensión totales	mg/l			183					
Sólidos en suspensión fijos	mg/l			127					
Sólidos en suspensión volátiles	mg/l			56					
Cloruros (CL-)	mg/l			163					
Sulfatos (SO4=)	mg/l			340					
Alcalinidad	mg/l			300					
Dureza total	mg/l			564					
Dureza cálcica	mg/l			439					
Calcio (Ca++)	mg/l			176					
Magnesio (Mg++)	mg/l			30					
Sulfuros totales (S=)	mg/l			4.2					
Nitrógeno amoniacal (N-NH3)	mg/l			27.4					
Nitrógeno de Nitritos (N-NO2-)	mg/l			0.58					
D.B.O. (5 días, 20℃)	mg/l			44					
D.B.O. Soluble	mg/l			9					
D.Q.O.	mg/l		181	199	529		159	174	
D.Q.O. Soluble	mg/l			64					
Plaguicidas y Herbicidas	μg/l			<lm< td=""><td></td><td></td><td></td><td></td><td></td></lm<>					
Sustancias Fenólicas	mg/l			<0,05					
Hidrocarburos	mg/l			<0,5					
C.O.V.	μg/l			<lm< td=""><td></td><td></td><td></td><td></td><td></td></lm<>					
Escherichia coli	NMP/100 ml		6.40E02	4.60E03	9.30E02	2.10E03	2.30E02	4.60E03	1.50E03
Huevos de Helmintos	Huevos /1000			<1					

Salida General

53

950

1184

Establecimiento: EL PARAMILLO

Punto: PM61

Sitio

N°Análisis

Matriz Fecha Hora Tipo Mues 874

Determinacion	Umedida
рН	unidad de pH
Conductividad	μS/cm
Sólidos sedimentables en 10 min.	ml/l
Sólidos sedimentables en 2 hs	ml/l
Sólidos en suspensión totales	mg/l
Sólidos en suspensión fijos	mg/l
Sólidos en suspensión volátiles	mg/l
Cloruros (CL-)	mg/l
Sulfatos (SO4=)	mg/l
Alcalinidad	mg/l
Dureza total	mg/l
Dureza cálcica	mg/l
Calcio (Ca++)	mg/l
Magnesio (Mg++)	mg/l
Sulfuros totales (S=)	mg/l
Nitrógeno amoniacal (N-NH3)	mg/l
Nitrógeno de Nitritos (N-NO2-)	mg/l
D.B.O. (5 días, 20℃)	mg/l
D.B.O. Soluble	mg/l
D.Q.O.	mg/l
D.Q.O. Soluble	mg/l
Plaguicidas y Herbicidas	μg/l
Sustancias Fenólicas	mg/l
Hidrocarburos	mg/l
C.O.V.	μg/l
Escherichia coli	NMP/100 ml
Huevos de Helmintos	Huevos /1000

	LC	LC	LC
	23-01-2019	25-01-2019	31-01-2019
	15:10	10:00	09:55
stra	Р	Р	Р
	Value	Valor	Malar
	8.1	8.3	7.9
	1900	1470	1380
	175	136	180
	7.50E02	7.50E02	4.30E02

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES **ENERO 2019**

Establecimiento: GRAL. ALVEAR (LAGUNAS)

Punto: PM50

		•	- [
			Sitio	Entrada			
			N°Análisis	264	547	928	1197
			Matriz	LC	LC	LC	LC
			Fecha	08-01-2019	15-01-2019	24-01-2019	31-01-2019
			Hora		10:00	13:20	10:00
			Tipo Muestra	Р	Р	PE	Р
Sen	Determinacion	Umedida	JI	Video	Volce	Malor	Valor
	рН	unidad de pH		6.7	7.8	7.1	7.5
	Conductividad	μS/cm		2090	1930	2050	2290
-	Sólidos sedimentables en 10 min.	ml/l				0.9	
	Sólidos sedimentables en 2 hs	ml/l				0.9	
2	Sólidos en suspensión totales	mg/l				31	
- 1	Sólidos en suspensión fijos	mg/l				5	
10	Sólidos en suspensión volátiles	mg/l				26	
12	Sulfatos (SO4=)	mg/l				310	
12	Alcalinidad	mg/l				472	
27	Sulfuros totales (S=)	mg/l				17.4	
34	Nitrógeno amoniacal (N-NH3)	mg/l				40.3	
38	D.B.O. (5 días, 20℃)	mg/l				82	
33	D.Q.O.	mg/l		234	197	205	168
40	Fósforo total (PO4-3)	mg/l				9.6	
51	Escherichia coli	NMP/100 ml		7.50E07	2.10E07	7.50E07	1.20E07
58	Huevos de Helmintos	Huevos /1000				26	

548

LC

10:30

08-01-2019 15-01-2019 24-01-2019 31-01-2019

929

LC

13:50

1198

LC

Establecimiento: GRAL. ALVEAR (LAGUNAS)

Punto: PM51

Salida

265

LC

Sitio

N°Análisis

Matriz

Fecha

Hora

Determinacion	Umedida
рН	unidad de pH
Conductividad	μS/cm
Sólidos sedimentables en 10 min.	ml/l
Sólidos sedimentables en 2 hs	ml/l
Sólidos en suspensión totales	mg/l
Sólidos en suspensión fijos	mg/l
Sólidos en suspensión volátiles	mg/l
Cloruros (CL-)	mg/l
Sulfatos (SO4=)	mg/l
Alcalinidad	mg/l
Dureza total	mg/l
Dureza cálcica	mg/l
Calcio (Ca++)	mg/l
Magnesio (Mg++)	mg/l
Sulfuros totales (S=)	mg/l
Nitrógeno amoniacal (N-NH3)	mg/l
Nitrógeno de Nitritos (N-NO2-)	mg/l
D.B.O. (5 días, 20℃)	mg/l
D.B.O. Soluble	mg/l
D.Q.O.	mg/l
D.Q.O. Soluble	mg/l
Fósforo total (PO4-3)	mg/l
Escherichia coli	NMP/100 ml

Huevos /1000

riora		10.00	10.00	10.10
Tipo Muestra	Р	Р	PE	Р
	Volum	Valor	Valor	Valor
	6.9	7.5	7.3	7.3
	2080	2210	2330	2330
			0.1	
			0.1	
			91	
			9	
			82	
			293	
			490	
			348	
			673	
			514	
			206	
			39	
			0.6	
			32.5	
			<0.01	
			48	
			16	
	269	214	232	325
			80	
			14.5	
	2.10E04	2.40E04	1.10E05	4.30E04
			<i>c</i> 1	

Huevos de Helmintos

Determinacion

Conductividad

Sulfatos (SO4=)

Sulfuros totales (S=)

D.B.O. (5 días, 20℃)

Fósforo total (PO4-3)

Huevos de Helmintos

Escherichia coli

Alcalinidad

D.Q.O.

Sólidos sedimentables en 10 min.

Sólidos sedimentables en 2 hs

Sólidos en suspensión totales

Sólidos en suspensión volátiles

Nitrógeno amoniacal (N-NH3)

Nitrógeno de Nitritos (N-NO2-)

Sólidos en suspensión fijos

рΗ

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES ENERO 2019

Establecimiento: JUNÍN Punto: PM06

Umedida

µS/cm

ml/l

ml/l

mg/l

NMP/100 ml Huevos /1000r

unidad de

	Sitio	Entrada			
	N°Análisis	308	581	752	1003
	Matriz	LC	LC	LC	LC
	Fecha	09-01-2019	16-01-2019	21-01-2019	28-01-2019
	Hora	15:10	15:00	14:25	10:15
	Tipo Muestra	Р	Р	PE	Р
	Л	Value	Valor	Milor	Valor
e pH		7.2	7.3	7.3	7.4
		1740	1650	1650	1870
				0.4	
				0.8	
				28	
				6	
				22	
				280	
				480	
				48.4	
				47.8	
				<0.01	
				120	
		335	246	241	203
				13.0	

1.60E07

2.30E07

18

4.30E07

2.10E07

Establecimiento: JUNÍN

Punto: PM07

Sitio	Salida			
N°Análisis	309	582	753	1004
Matriz	LC	LC	LC	LC
Fecha	09-01-2019	16-01-2019	21-01-2019	28-01-2019
Hora	15:15	15:10	12:30	10:05
Tipo Muestra	Р	Р	PE	Р
	Valor	Vision	Valor	Valor

Determinacion	Umedida
рН	unidad de pH
Conductividad	μS/cm
Sólidos sedimentables en 10 min.	ml/l
Sólidos sedimentables en 2 hs	ml/l
Sólidos en suspensión totales	mg/l
Sólidos en suspensión fijos	mg/l
Sólidos en suspensión volátiles	mg/l
Cloruros (CL-)	mg/l
Sulfatos (SO4=)	mg/l
Alcalinidad	mg/l
Dureza total	mg/l
Dureza cálcica	mg/l
Calcio (Ca++)	mg/l
Magnesio (Mg++)	mg/l
Sulfuros totales (S=)	mg/l
Nitrógeno amoniacal (N-NH3)	mg/l
Nitrógeno de Nitritos (N-NO2-)	mg/l
D.B.O. (5 días, 20℃)	mg/l
D.B.O. Soluble	mg/l
D.Q.O.	mg/l
D.Q.O. Soluble	mg/l
Fósforo total (PO4-3)	mg/l
Escherichia coli	NMP/100 ml
Huevos de Helmintos	Huevos /1000

Malor	Malor	Malor	Valor
7.1	7.2	7.2	7.1
1690	1650	1670	1830
		0.1	
		0.7	
		30	
		4	
		26	
		136	
		430	
		332	
		529	
		429	
		172	
		24	
		5.7	
		43.1	
		<0.01	
		79	
		45	
195	187	173	191
		99	
		11.9	
3.50E06	1.10E07	1.10E06	2.40E07
		-4	

Establecimiento: LA PAZ Punto: PM45

			N°Análisis	1125
			Matriz	LC
			Fecha	30-01-2019
			Hora	14:15
			Tipo Muestra	PE
den	Determinacion	Umedida		- Value
	pH	unidad de pH		6.9
3	Conductividad	μS/cm		2640
0	Sólidos sedimentables en 10 min.	ml/l		50
7	Sólidos sedimentables en 2 hs	ml/l		30
8	Sólidos en suspensión totales	mg/l		1400
9	Sólidos en suspensión fijos	mg/l		500
100	Sólidos en suspensión volátiles	mg/l		900
	Sulfatos (SO4=)	mg/l		640
	Alcalinidad	mg/l		536
271	Sulfuros totales (S=)	mg/l		86.0
300	Nitrógeno amoniacal (N-NH3)	mg/l		76.2
	Nitrógeno de Nitritos (N-NO2-)	mg/l		<0.01
	Nitrógeno de Nitratos (N-NO3-)	mg/l		0.6
36	D.B.O. (5 días, 20℃)	mg/l		640
	D.Q.O.	mg/l		2310
42	Fósforo total (PO4-3)	mg/l		24.4
540	Escherichia coli	NMP/100 ml		4.60E07
560	Huevos de Helmintos	Huevos /1000	ı	13

Sitio

Entrada

Establecimiento: LA PAZ Punto: PM46

Sitio	Salida
N°Análisis	1126
Matriz	LC
Fecha	30-01-2019
Hora	14:40
Tipo Muestra	PE

	Determinacion	Umedida
	pH	unidad de pH
	Conductividad	μS/cm
60	Sólidos sedimentables en 10 min.	ml/l
	Sólidos sedimentables en 2 hs	ml/l
	Sólidos en suspensión totales	mg/l
	Sólidos en suspensión fijos	mg/l
	Sólidos en suspensión volátiles	mg/l
110	Cloruros (CL-)	mg/l
	Sulfatos (SO4=)	mg/l
130	Alcalinidad	mg/l
140	Dureza total	mg/l
150	Dureza cálcica	mg/l
180	Calcio (Ca++)	mg/l
200	Magnesio (Mg++)	mg/l
270	Sulfuros totales (S=)	mg/l
	Nitrógeno amoniacal (N-NH3)	mg/l
	Nitrógeno de Nitritos (N-NO2-)	mg/l
330	Nitrógeno de Nitratos (N-NO3-)	mg/l
360	D.B.O. (5 días, 20℃)	mg/l
365	D.B.O. Soluble	mg/l
370	D.Q.O.	mg/l
615	D.Q.O. Soluble	mg/l
420	Fósforo total (PO4-3)	mg/l
540	Escherichia coli	NMP/100 ml
550	Huevos de Helmintos	Huevos /1000

PE
8.1
2940
<0.1
<0.1
140
20
120
330
750
384
653
519
208
33
2.2
40.9
<0.01
0.7
67
17
306
79
11.4
2.40E06
<1

Determinacion

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES ENERO 2019

Establecimiento: LAS CUEVAS Punto: PM38

Umedida

Sitio	Entrada
N°Análisis	
Matriz	LC
Fecha	09-01-2019
Hora	
Tipo Muestra	PE

Establecimiento: PALMIRA Punto: PM09

			N°Análisis	310	576	759	1005
			Matriz	LC	LC	LC	LC
			Fecha	09-01-2019	16-01-2019	21-01-2019	28-01-2019
			Hora	14:00	14:00	13:35	13:10
			Tipo Muestra	Р	PE	Р	Р
Sen	Determinacion	Umedida		_ Table	Valor	Valor	Visitor
	pH	unidad de pH		7.5	7.2	7.4	7.5
3	Conductividad	μS/cm		1200	1190	1190	1530
0	Sólidos sedimentables en 10 min.	ml/l			2.0		
	Sólidos sedimentables en 2 hs	ml/l			2.5		
-	Sólidos en suspensión totales	mg/l			95		
9	Sólidos en suspensión fijos	mg/l			33		
10	Sólidos en suspensión volátiles	mg/l			62		
12	Sulfatos (SO4=)	mg/l			120		
13	Alcalinidad	mg/l			356		
27	Sulfuros totales (S=)	mg/l			29.7		
30	Nitrógeno amoniacal (N-NH3)	mg/l			43.1		
	Nitrógeno de Nitritos (N-NO2-)	mg/l			<0.01		
36	D.B.O. (5 días, 20℃)	mg/l			164		
37	D.Q.O.	mg/l		536	318	263	275
54	Escherichia coli	NMP/100 ml		9.30E07	2.10E07	2.10E08	4.60E07
56	Huevos de Helmintos	Huevos /1000	1		19		

Sitio

Entrada

Establecimiento: PALMIRA	Punto: PM10
--------------------------	-------------

			Sitio	Salida (es
			N°Análisis	149
			Matriz	LC
			Fecha	07-01-2019
			Hora	10:30
			Tipo Muestra	Р
Inden	Determinacion	Umedida		Ville
10	pH	unidad de pH		7.7
	Conductividad	μS/cm		1310
370	D.Q.O.	mg/l		213
540	Escherichia coli	NMP/100 ml		4.60E03

Establecimiento: PALMIRA

Punto: PM11

			Т
den	Determinacion	Umedida	J
10	рН	unidad de pH	
31	Conductividad	μS/cm	
60	Sólidos sedimentables en 10 min.	ml/l	
	Sólidos sedimentables en 2 hs	ml/l	
80	Sólidos en suspensión totales	mg/l	
	Sólidos en suspensión fijos	mg/l	
100	Sólidos en suspensión volátiles	mg/l	
110	Cloruros (CL-)	mg/l	
120	Sulfatos (SO4=)	mg/l	
130	Alcalinidad	mg/l	
140	Dureza total	mg/l	
160	Dureza cálcica	mg/l	
	Calcio (Ca++)	mg/l	
200	Magnesio (Mg++)	mg/l	
270	Sulfuros totales (S=)	mg/l	
	Nitrógeno amoniacal (N-NH3)	mg/l	
	Nitrógeno de Nitritos (N-NO2-)	mg/l	
	D.B.O. (5 días, 20℃)	mg/l	
365	D.B.O. Soluble	mg/l	
	D.Q.O.	mg/l	
415	D.Q.O. Soluble	mg/l	
540	Escherichia coli	NMP/100 ml	
560	Huevos de Helmintos	Huevos /1000	ı

Sitio	Salida						
N°Análisis	32	33	311	577	760	909	1006
Matriz	LC						
Fecha	02-01-2019	02-01-2019	09-01-2019	16-01-2019	21-01-2019	24-01-2019	28-01-2019
Hora	08:40	08:40	14:10	14:15	13:45	13:30	13:00
Tipo Muestra	Р	DU	Р	PE	Р	Р	Р
	Male	Mater	Valor	Mater	Volor	Valor	Video
	8.0		8.1	8.8	8.4	9.1	8.4
	1200		1250	1150	1120	1670	1260
				0.2			

8.0		8.1	8.8	8.4	9.1	8.4
1200		1250	1150	1120	1670	1260
			0.2			
			0.2			
			100			
			8			
			92			
			119			
			200			
			300			İ
			419			
			294			
			118			
			30			
			5.0			
			19.0			
			0.12			
			53			
			14			
204		274	210	216	166	182
			59			
2.40E03	1.50E03	2.40E02	9.30E02	1.50E02	3.50E02	9.30E02
			<1			

Establecimiento: PALMIRA Punto: PM11

Sitio		
N°Análisis	1007	
Matriz	LC	LC
Fecha	28-01-2019	14-01-2019
Hora	13:00	
Tipo Muestra	DU	Р
	Value	Vider
1		

Irden	Determinacion	Umedida
10	рН	unidad de pH
31	Conductividad	μS/cm
60	Sólidos sedimentables en 10 min.	ml/l
70	Sólidos sedimentables en 2 hs	ml/l
80	Sólidos en suspensión totales	mg/l
93	Sólidos en suspensión fijos	mg/l
100	Sólidos en suspensión volátiles	mg/l
110	Cloruros (CL-)	mg/l
120	Sulfatos (SO4=)	mg/l
130	Alcalinidad	mg/l
540	Dureza total	mg/l
160	Dureza cálcica	mg/l
130	Calcio (Ca++)	mg/l
200	Magnesio (Mg++)	mg/l
270	Sulfuros totales (S=)	mg/l
300	Nitrógeno amoniacal (N-NH3)	mg/l
310	Nitrógeno de Nitritos (N-NO2-)	mg/l
386	D.B.O. (5 días, 20℃)	mg/l
365	D.B.O. Soluble	mg/l
370	D.Q.O.	mg/l
411	D.Q.O. Soluble	mg/l
540	Escherichia coli	NMP/100 ml
560	Huevos de Helmintos	Huevos /1000

	DU	Р
ı		
	7.50E02	

Establecimiento: PENITENTES Punto: PM36

		N°Análisis	300
		Matriz	LC
		Fecha	09-01-2019
		Hora	11:50
		Tipo Muestra	PE
Determinacion	Umedida		
pH	unidad de pH		6.8
Conductividad	μS/cm		490
Sólidos sedimentables en 10 min.	ml/l		1.0
Sólidos sedimentables en 2 hs	ml/l		1.0
D.B.O. (5 días, 20℃)	mg/l		12
D.Q.O.	mg/l		20
Escherichia coli	NMP/100 ml		2.10E06
Huevos de Helmintos	Huevos /1000		<1

Sitio

Entrada

Establecimiento: POLVAREDAS Punto: PM34

			Sitio	Entrada
			N°Análisis	301
			Matriz	LC
			Fecha	09-01-2019
			Hora	10:30
			Tipo Muestra	PE
kn	Determinacion	Umedida	JI	
9	pH	unidad de pH		7.6
	Conductividad	μS/cm		490
0	Sólidos sedimentables en 10 min.	ml/l		0.8
	Sólidos sedimentables en 2 hs	ml/l		0.8
	Sólidos en suspensión totales	mg/l		72
	Sólidos en suspensión fijos	mg/l		36
100	Sólidos en suspensión volátiles	mg/l		36
360	D.B.O. (5 días, 20℃)	mg/l		58
371	D.Q.O.	mg/l		107
540	Escherichia coli	NMP/100 ml		4.60E06
560	Huevos de Helmintos	Huevos /1000	ı	10

Establecimiento: POTRERILLOS (LODOS ACTIVADOS)

Punto: PM52

Sitio	Entrada	
N°Análisis	302	1041
Matriz	LC	LC
Fecha	09-01-2019	28-01-2019
Hora	08:30	15:25
Tipo Muestra	Р	PE
	Valor	Valor

isn	Determinacion	Umedida
	рН	unidad de pH
	Conductividad	μS/cm
	Sólidos sedimentables en 10 min.	ml/l
70	Sólidos sedimentables en 2 hs	ml/l
	Sólidos en suspensión totales	mg/l
	Sólidos en suspensión fijos	mg/l
100	Sólidos en suspensión volátiles	mg/l
120	Sulfatos (SO4=)	mg/l
	Alcalinidad	mg/l
270	Sulfuros totales (S=)	mg/l
300	Nitrógeno amoniacal (N-NH3)	mg/l
310	Nitrógeno de Nitritos (N-NO2-)	mg/l
330	Nitrógeno de Nitratos (N-NO3-)	mg/l
350	D.B.O. (5 días, 20℃)	mg/l
370	D.Q.O.	mg/l
	Fósforo total (PO4-3)	mg/l
540	Escherichia coli	NMP/100 ml
560	Huevos de Helmintos	Huevos /1000
	·	

Valor	Valor
6.9	7.2
740	1080
	0.2
	1.5
	89
	11
	78
	100
	320
	32.5
	49.8
	<0.01
	0.1
	233
1014	321
	24.7
7.50E07	4.60E07
	7

Establecimiento: POTRERILLOS (LODOS ACTIVADOS)

Punto: PM53

Sitio	Salida	
N°Análisis	303	1042
Matriz	LC	LC
Fecha	09-01-2019	28-01-2019
Hora	08:45	15:35
Tipo Muestra	Р	PE

eterminacion	Umedida
рН	unidad de pH
Conductividad	μS/cm
Sólidos sedimentables en 10 min.	ml/l
Sólidos sedimentables en 2 hs	ml/l
Sólidos en suspensión totales	mg/l
Sólidos en suspensión fijos	mg/l
Sólidos en suspensión volátiles	mg/l
Cloruros (CL-)	mg/l
Sulfatos (SO4=)	mg/l
Alcalinidad	mg/l
Dureza total	mg/l
Dureza cálcica	mg/l
Calcio (Ca++)	mg/l
Magnesio (Mg++)	mg/l
Sulfuros totales (S=)	mg/l
Nitrógeno amoniacal (N-NH3)	mg/l
Nitrógeno de Nitritos (N-NO2-)	mg/l
Nitrógeno de Nitratos (N-NO3-)	mg/l
D.B.O. (5 días, 20℃)	mg/l
D.B.O. Soluble	mg/l
D.Q.O.	mg/l
D.Q.O. Soluble	mg/l
Fósforo total (PO4-3)	mg/l
Escherichia coli	NMP/100 ml
Huevos de Helmintos	Huevos /1000
	reterminacion pH Conductividad Sólidos sedimentables en 10 min. Sólidos sedimentables en 2 hs Sólidos sedimentables en 2 hs Sólidos en suspensión totales Sólidos en suspensión fijos Sólidos en suspensión volátiles Cloruros (CL-) Sulfatos (SO4=) Alcalinidad Dureza total Dureza cálcica Calcio (Ca++) Magnesio (Mg++) Sulfuros totales (S=) Nitrógeno amoniacal (N-NH3) Nitrógeno de Nitritos (N-NO2-) Nitrógeno de Nitratos (N-NO3-) D.B.O. (5 días, 20°C) D.B.O. Soluble D.Q.O. D.Q.O. Soluble Fósforo total (PO4-3) Escherichia coli Huevos de Helmintos

No. and and an analysis of the second	Valor
7.4	7.4
870	1010
	0.2
	15
	175
	38
	137
	52
	150
	224
	299
	160
	64
	34
	1.0
	34.2
	0.10
	2.8
	38
	6
31	269
	21
	39.8
9.30E05	1.10E06
	<1

Establecimiento: PUENTE DEL INCA	Punto: PM37

			Sitio	Entrada
			N°Análisis	304
			Matriz	LC
			Fecha	09-01-2019
			Hora	13:00
			Tipo Muestra	PE
kn	Determinacion	Umedida		-
	pH	unidad de pH		8.0
3	Conductividad	μS/cm		820
0	Sólidos sedimentables en 10 min.	ml/l		1.0
	Sólidos sedimentables en 2 hs	ml/l		1.7
	Sólidos en suspensión totales	mg/l		46
	Sólidos en suspensión fijos	mg/l		9
100	Sólidos en suspensión volátiles	mg/l		37
	D.B.O. (5 días, 20℃)	mg/l		59
	D.Q.O.	mg/l		132
540	Escherichia coli	NMP/100 ml		2.40E06
560	Huevos de Helmintos	Huevos /1000		5

Establecimiento: PUNTA DE VACAS	Punto: PM35

			Sitio	Entrada
			N°Análisis	305
			Matriz	LC
			Fecha	09-01-2019
			Hora	11:10
			Tipo Muestra	PE
in	Determinacion	Umedida		- Value
	рН	unidad de pH		7.3
31	Conductividad	μS/cm		650
60	Sólidos sedimentables en 10 min.	ml/l		0.5
	Sólidos sedimentables en 2 hs	ml/l		2.0
	Sólidos en suspensión totales	mg/l		158
	Sólidos en suspensión fijos	mg/l		3
100	Sólidos en suspensión volátiles	mg/l		125
	D.B.O. (5 días, 20℃)	mg/l		208
370	D.Q.O.	mg/l		489
540	Escherichia coli	NMP/100 ml		3.50E06
560	Huevos de Helmintos	Huevos /1000		8

Determinacion

Conductividad

Sulfatos (SO4=)
Alcalinidad
Sulfuros totales (S=)
Nitrógeno amoniacal (N-NH3)
Nitrógeno de Nitritos (N-NO2-)
D.B.O. (5 días, 20°C)

Fósforo total (PO4-3)

Huevos de Helmintos

Escherichia coli

D.Q.O.

Sólidos sedimentables en 10 mir Sólidos sedimentables en 2 hs Sólidos en suspensión totales Sólidos en suspensión fijos Sólidos en suspensión volátiles

рΗ

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES ENERO 2019

21

Establecimiento: RIVADAVIA Punto: PM01

Huevos /1000

		Sitio	Entrada			
		N°Análisis	312	583	754	1008
		Matriz	LC	LC	LC	LC
		Fecha	09-01-2019	16-01-2019	21-01-2019	28-01-2019
		Hora	15:35	15:40	14:55	10:45
		Tipo Muestra	Р	Р	PE	Р
	Umedida	J	-	Visites	Voles	Visites
	unidad de pH		7.6	7.4	7.3	7.5
	μS/cm		1910	1890	1880	1910
in.	ml/l				2.5	
	ml/l				3.0	
	mg/l				87	
	mg/l				17	
	mg/l				70	
	mg/l				410	
	mg/l				448	
	mg/l				37.3	
	mg/l				53.8	
	mg/l				<0.01	
	mg/l				170	
	mg/l		297	388	348	247
	mg/l				15.0	
	NMP/100 ml		1.10E08	1.20E07	7.50E07	1.50E07

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES **ENERO 2019**

Establecimiento: RIVADAVIA

Punto: PM02

Sitio

Salida

			N°Análisis	34	150	313	314	471	472	584
			Matriz	LC						
			Fecha	02-01-2019	07-01-2019	09-01-2019	09-01-2019	14-01-2019	14-01-2019	16-01-2019
			Hora	12:45	09:25	15:40	15:40	11:00	11:00	15:50
			Tipo Muestra	Р	Р	Р	DU	Р	DU	Р
0	Determinacion	Umedida		Value	Valor	Malor	Valor	Volor	Velor	Molor
9	Н	unidad de pH		7.5	7.3	7.3		7.4		8.2
3	Conductividad	μS/cm		1660	1730	1860		2100		1790
0	Sólidos sedimentables en 10 min.	ml/l								
7	Sólidos sedimentables en 2 hs	ml/l								
ð	Sólidos en suspensión totales	mg/l								
9	Sólidos en suspensión fijos	mg/l								
i CX	Sólidos en suspensión volátiles	mg/l								
111	Cloruros (CL-)	mg/l								
120	Sulfatos (SO4=)	mg/l								
×	Alcalinidad	mg/l								
140	Dureza total	mg/l								
100	Dureza cálcica	mg/l								
100	Calcio (Ca++)	mg/l								
00	Magnesio (Mg++)	mg/l								
77	Sulfuros totales (S=)	mg/l								
100	Nitrógeno amoniacal (N-NH3)	mg/l								
111	Nitrógeno de Nitritos (N-NO2-)	mg/l								
100	D.B.O. (5 días, 20℃)	mg/l								
102	D.B.O. Soluble	mg/l								
177	D.Q.O.	mg/l		312	231	199		256		190
11:	D.Q.O. Soluble	mg/l								
120	Fósforo total (PO4-3)	mg/l								
	Escherichia coli	NMP/100 ml		9.30E04	1.50E04	1.50E05	3.50E05	4.60E04	2.90E04	2.40E04
	Huevos de Helmintos	Huevos /1000								
				-						

Establecimiento: RIVADAVIA Punto: PM02

Sitio			
N°Análisis	755	910	1009
Matriz	LC	LC	LC
Fecha	21-01-2019	24-01-2019	28-01-2019
Hora	14:05	11:15	10:35
Tipo Muestra	PE	Р	Р
	Valor	Valor	Valor

	Determinacion	Umedida
90	рН	unidad de pH
31	Conductividad	μS/cm
60	Sólidos sedimentables en 10 min.	ml/l
70	Sólidos sedimentables en 2 hs	ml/l
30	Sólidos en suspensión totales	mg/l
20	Sólidos en suspensión fijos	mg/l
100	Sólidos en suspensión volátiles	mg/l
110	Cloruros (CL-)	mg/l
120	Sulfatos (SO4=)	mg/l
130	Alcalinidad	mg/l
140	Dureza total	mg/l
160	Dureza cálcica	mg/l
180	Calcio (Ca++)	mg/l
200	Magnesio (Mg++)	mg/l
270	Sulfuros totales (S=)	mg/l
300	Nitrógeno amoniacal (N-NH3)	mg/l
310	Nitrógeno de Nitritos (N-NO2-)	mg/l
360	D.B.O. (5 días, 20℃)	mg/l
365	D.B.O. Soluble	mg/l
370	D.Q.O.	mg/l
415	D.Q.O. Soluble	mg/l
420	Fósforo total (PO4-3)	mg/l
540	Escherichia coli	NMP/100 ml
550	Huevos de Helmintos	Huevos /1000

-	Value	Mala
7.3	8.1	7.6
1730	2815	2000
<0.1		
<0.1		
84		
4		
80		
183		
480		
256		
574		
494		
198		
19		
5.7		
25.8		
0.04		
51		
15		
204	228	196
66		
11.3		
2.10E05	1.10E04	2.10E06
<i>_</i> 1		

Establecimiento: RIVADAVIA Punto: RI S1

			N°Análisis	756
			Matriz	LC
			Fecha	21-01-2019
			Hora	15:20
			Tipo Muestra	PE
Sen	Determinacion	Umedida	JI.	
1	рН	unidad de pH		8.1
	Conductividad	μS/cm		1750
8	Sólidos en suspensión totales	mg/l		63
9	Sólidos en suspensión fijos	mg/l		9
10	Sólidos en suspensión volátiles	mg/l		54
11	Cloruros (CL-)	mg/l		186
12	Sulfatos (SO4=)	mg/l		500
13	Alcalinidad	mg/l		256
14	Dureza total	mg/l		589
16	Dureza cálcica	mg/l		489
18	Calcio (Ca++)	mg/l		196
20	Magnesio (Mg++)	mg/l		24
27	Sulfuros totales (S=)	mg/l		6.0
30	Nitrógeno amoniacal (N-NH3)	mg/l		25.2
31	Nitrógeno de Nitritos (N-NO2-)	mg/l		0.04
36	D.B.O. (5 días, 20℃)	mg/l		38
37	D.Q.O.	mg/l		195
41	D.Q.O. Soluble	mg/l		92
42	Fósforo total (PO4-3)	mg/l		12.0
54	Escherichia coli	NMP/100 ml		4.60E03

Sitio

Salida de

Establecimiento: RIVADAVIA Punto: RI S2

			N°Análisis	757
			Matriz	LC
			Fecha	21-01-2019
			Hora	15:15
			Tipo Muestra	PE
ien	Determinacion	Umedida		
	рН	unidad de pH		8.2
	Conductividad	μS/cm		1750
8	Sólidos en suspensión totales	mg/l		63
9	Sólidos en suspensión fijos	mg/l		10
100	Sólidos en suspensión volátiles	mg/l		53
	Cloruros (CL-)	mg/l		188
120	Sulfatos (SO4=)	mg/l		520
130	Alcalinidad	mg/l		236
140	Dureza total	mg/l		614
160	Dureza cálcica	mg/l		474
180	Calcio (Ca++)	mg/l		190
200	Magnesio (Mg++)	mg/l		34
271	Sulfuros totales (S=)	mg/l		5.4
300	Nitrógeno amoniacal (N-NH3)	mg/l		25.2
311	Nitrógeno de Nitritos (N-NO2-)	mg/l		0.04
360	D.B.O. (5 días, 20℃)	mg/l		32
371	D.Q.O.	mg/l		193
413	D.Q.O. Soluble	mg/l		92
425	Fósforo total (PO4-3)	mg/l		11.0
54	Escherichia coli	NMP/100 ml		1.10E04

Sitio

Salida de

Establecimiento: RIVADAVIA Punto: RI S3

			Sitio	Salida de
			N°Análisis	758
			Matriz	LC
			Fecha	21-01-2019
			Hora	15:05
			Tipo Muestra	PE
lan .	Determinacion	Umedida	J	- Value
	рН	unidad de pH		7.5
31	Conductividad	μS/cm		1760
80	Sólidos en suspensión totales	mg/l		100
	Sólidos en suspensión fijos	mg/l		15
	Sólidos en suspensión volátiles	mg/l		85
110	Cloruros (CL-)	mg/l		181
120	Sulfatos (SO4=)	mg/l		480
	Alcalinidad	mg/l		252
140	Dureza total	mg/l		589
160	Dureza cálcica	mg/l		469
180	Calcio (Ca++)	mg/l		188
200	Magnesio (Mg++)	mg/l		29
270	Sulfuros totales (S=)	mg/l		5.4
300	Nitrógeno amoniacal (N-NH3)	mg/l		26.9
310	Nitrógeno de Nitritos (N-NO2-)	mg/l		<0.01
360	D.B.O. (5 días, 20℃)	mg/l		64
370	D.Q.O.	mg/l		226
415	D.Q.O. Soluble	mg/l		65
420	Fósforo total (PO4-3)	mg/l		11.7
540	Escherichia coli	NMP/100 ml		3.50E05

Establecimiento: SAN CARLOS

Punto: PM22

			Sitio	Entrada			
			N°Análisis	87	226	500	786
			Matriz	LC	LC	LC	LC
			Fecha	03-01-2019	08-01-2019	14-01-2019	22-01-201
			Hora	10:05	10:40	15:30	10:20
			Tipo Muestra	Р	Р	PE	Р
rden	Determinacion	Umedida		- Valer	Molec	Nebr	Valor
9	pН	unidad de pH		7.2	7.2	7.1	7.0
3	Conductividad	μS/cm		1250	1110	1270	1140
0	Sólidos sedimentables en 10 min.	ml/l				3.5	
7	Sólidos sedimentables en 2 hs	ml/l				6.0	
8	Sólidos en suspensión totales	mg/l				243	
9	Sólidos en suspensión fijos	mg/l				43	
100	Sólidos en suspensión volátiles	mg/l				200	
120	Sulfatos (SO4=)	mg/l				220	
130	Alcalinidad	mg/l				388	
271	Sulfuros totales (S=)	mg/l				6.5	
300	Nitrógeno amoniacal (N-NH3)	mg/l				69.4	
	Nitrógeno de Nitritos (N-NO2-)	mg/l				<0.01	
36	D.B.O. (5 días, 20℃)	mg/l				339	
371	D.Q.O.	mg/l		94	78	599	134
540	Escherichia coli	NMP/100 ml		2.90E07	2.10E07	2.40E07	2.30E07
560	Huevos de Helmintos	Huevos /1000	1			23	

Establecimiento: SAN CARLOS

Punto: PM23

Sitio

Salida

			N°Análisis	88	89	227	389	501	627	628
			Matriz	LC	LC	LC	LC	LC	LC	LC
			Fecha	03-01-2019	03-01-2019	08-01-2019	11-01-2019	14-01-2019	17-01-2019	17-01-2019
			Hora	10:20	10:20	10:55	09:30	15:40	09:15	09:15
			Tipo Muestra	Р	DU	Р	Р	PE	Р	DU
kn	Determinacion	Umedida		Vieles	Validate	Melor	Volor	Valor	Valor	Malor
9	pН	unidad de pH		7.6		8.0	7.1	8.1	7.3	
3	Conductividad	μS/cm		1170		1090	1250	1140	1200	
0	Sólidos sedimentables en 10 min.	ml/l						0.5		
7	Sólidos sedimentables en 2 hs	ml/l						0.5		
3	Sólidos en suspensión totales	mg/l						200		
9	Sólidos en suspensión fijos	mg/l						20		
100	Sólidos en suspensión volátiles	mg/l						180		
	Cloruros (CL-)	mg/l						113		
123	Sulfatos (SO4=)	mg/l						200		
130	Alcalinidad	mg/l						312		
140	Dureza total	mg/l						289		
160	Dureza cálcica	mg/l						224		
180	Calcio (Ca++)	mg/l						90		
200	Magnesio (Mg++)	mg/l						16		
271	Sulfuros totales (S=)	mg/l						5.7		
300	Nitrógeno amoniacal (N-NH3)	mg/l						40.3		
311	Nitrógeno de Nitritos (N-NO2-)	mg/l						<0.01		
360	D.B.O. (5 días, 20℃)	mg/l						72		
368	D.B.O. Soluble	mg/l						16		
	D.Q.O.	mg/l		355		369	365	350	289	
413	D.Q.O. Soluble	mg/l						63	·	
530	C.O.V.	μg/l						<lm< td=""><td></td><td></td></lm<>		
54	Escherichia coli	NMP/100 ml		4.60E05	7.50E05	9.30E04	2.40E05	2.10E05	2.40E05	4.60E05
	Huevos de Helmintos	Huevos /1000						<1		

Establecimiento: SAN CARLOS

Punto: PM23

Sitio		
N°Análisis	787	907
Matriz	LC	LC
Fecha	22-01-2019	24-01-2019
Hora	10:10	10:50
Tipo Muestra	Р	Р

len	Determinacion	Umedida
50	рН	unidad de pH
	Conductividad	μS/cm
60	Sólidos sedimentables en 10 min.	ml/l
70	Sólidos sedimentables en 2 hs	ml/l
80	Sólidos en suspensión totales	mg/l
90	Sólidos en suspensión fijos	mg/l
100	Sólidos en suspensión volátiles	mg/l
110	Cloruros (CL-)	mg/l
120	Sulfatos (SO4=)	mg/l
130	Alcalinidad	mg/l
140	Dureza total	mg/l
160	Dureza cálcica	mg/l
180	Calcio (Ca++)	mg/l
200	Magnesio (Mg++)	mg/l
270	Sulfuros totales (S=)	mg/l
300	Nitrógeno amoniacal (N-NH3)	mg/l
310	Nitrógeno de Nitritos (N-NO2-)	mg/l
360	D.B.O. (5 días, 20℃)	mg/l
365	D.B.O. Soluble	mg/l
370	D.Q.O.	mg/l
	D.Q.O. Soluble	mg/l
530	C.O.V.	μg/l
540	Escherichia coli	NMP/100 ml
	Huevos de Helmintos	Huevos /1000

7.9	9.1
1300	1620
321	347
9.30E02	3.50E05

Determ рΗ Cond

D.Q.O. Soluble

Escherichia coli

Huevos de Helmintos

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES **ENERO 2019**

Establecimiento: SAN CARLOS

Punto: PM57

Sitio

		-
Determinacion	Umedida	
рН	unidad de pH	
Conductividad	μS/cm	
Sólidos sedimentables en 10 min.	ml/l	
Sólidos sedimentables en 2 hs	ml/l	
Sólidos en suspensión totales	mg/l	
Sólidos en suspensión fijos	mg/l	
Sólidos en suspensión volátiles	mg/l	
Cloruros (CL-)	mg/l	
Sulfatos (SO4=)	mg/l	
Alcalinidad	mg/l	
Dureza total	mg/l	
Dureza cálcica	mg/l	
Calcio (Ca++)	mg/l	
Magnesio (Mg++)	mg/l	
Sulfuros totales (S=)	mg/l	
Nitrógeno amoniacal (N-NH3)	mg/l	
Nitrógeno de Nitritos (N-NO2-)	mg/l	
D.B.O. (5 días, 20℃)	mg/l	
D.B.O. Soluble	mg/l	
D.Q.O.	mg/l	

NMP/100 ml

Huevos /1000

	00			
N°Análisis	90	503	630	
Matriz	LC	LC	LC	LC
Fecha	03-01-2019	14-01-2019	17-01-2019	24-01-2019
Hora	09:45	15:55	09:30	
Tipo Muestra	Р	PE	Р	Р
	Visio	Voles	Valor	Valer
	7.2	7.3	7.0	
	930	940	870	
		0.4		
		1.0		
		60		
		15		
		45		
		29		
		66		
		384		
		249		
		190		
		76		
		15		

11.5

44.8

<0.01

103

76

251

138

1.20E07

<1

176

4.60E06

225

2.40E07

Salida de zanja de oxidación

Establecimiento: SAN CARLOS

Punto: SC AC

	Sitio	Salida ant	es de clora	r		
	N°Análisis	390	502	629	788	
	Matriz	LC	LC	LC	LC	
	Fecha	11-01-2019	14-01-2019	17-01-2019	22-01-2019	
	Hora	09:30	15:45	09:20	10:00	
	Tipo Muestra	Р	PE	Р	Р	
		Voles	Malor	Malor	Valor	
рΗ		7.1	8.1	7.2	8.0	
		1260	1130	1200	1180	
		381	337	310	313	
ml			4.60E05	2.10E05		

rden	Determinacion	Umedida
9	рН	unidad de pl
	Conductividad	μS/cm
	D.Q.O.	mg/l
	Escherichia coli	NMP/100 ml

Establecimiento: SAN MARTÍN

Punto: PM04

			Sitio	Entrada			
			N°Análisis	315	578	761	1010
			Matriz	LC	LC	LC	LC
			Fecha	09-01-2019	16-01-2019	21-01-2019	28-01-201
			Hora	16:20	16:30	16:00	11:50
			Tipo Muestra	Р	PE	Р	Р
Inden	Determinacion	Umedida	J	Mater	Volor	Malor	Valor
9	pH	unidad de pH		7.3	7.3	6.1	7.3
3	Conductividad	μS/cm		1920	1720	1490	1620
0	Sólidos sedimentables en 10 min.	ml/l			2.0		
7	Sólidos sedimentables en 2 hs	ml/l			2.5		
5	Sólidos en suspensión totales	mg/l			133		
0	Sólidos en suspensión fijos	mg/l			40		
100	Sólidos en suspensión volátiles	mg/l			93		
12	Sulfatos (SO4=)	mg/l			230		
130	Alcalinidad	mg/l			424		
271	Sulfuros totales (S=)	mg/l			51.5		
300	Nitrógeno amoniacal (N-NH3)	mg/l			43.1		
311	Nitrógeno de Nitritos (N-NO2-)	mg/l			<0.01		
36	D.B.O. (5 días, 20℃)	mg/l			285		
371	D.Q.O.	mg/l		419	562	928	340
540	Escherichia coli	NMP/100 ml		4.30E07	1.50E07	3.50E07	2.90E07
500	Huevos de Helmintos	Huevos /1000	ı		17		

474

LC

14-01-2019 16-01-2019

579

LC

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES ENERO 2019

151

LC

152

LC

02-01-2019 07-01-2019 07-01-2019 09-01-2019 14-01-2019

Establecimiento: SAN MARTÍN

Punto: PM05

Sitio

N°Análisis

Matriz

Fecha Hora Salida

35

LC

			Tipo Muestra
den	Determinacion	Umedida	
10	рН	unidad de pH	
31	Conductividad	μS/cm	
60	Sólidos sedimentables en 10 min.	ml/l	
70	Sólidos sedimentables en 2 hs	ml/l	
80	Sólidos en suspensión totales	mg/l	
90	Sólidos en suspensión fijos	mg/l	
100	Sólidos en suspensión volátiles	mg/l	
110	Cloruros (CL-)	mg/l	
120	Sulfatos (SO4=)	mg/l	
130	Alcalinidad	mg/l	
140	Dureza total	mg/l	
	Dureza cálcica	mg/l	
	Calcio (Ca++)	mg/l	
200	Magnesio (Mg++)	mg/l	
270	Sulfuros totales (S=)	mg/l	
300	Nitrógeno amoniacal (N-NH3)	mg/l	
310	Nitrógeno de Nitritos (N-NO2-)	mg/l	
380	D.B.O. (5 días, 20℃)	mg/l	
388	D.B.O. Soluble	mg/l	
370	D.Q.O.	mg/l	
415	D.Q.O. Soluble	mg/l	
540	Escherichia coli	NMP/100 ml	
	Huevos de Helmintos	Huevos /1000	

13:50	10:00	10:00	16:35	11:40	11:40	16:40
Р	Р	DU	Р	Р	DU	PE
Valor	Valor	Weign	Valor	Maler	Malor	Malor
8.0	7.8		7.7	7.6		7.8
1350	1400		1530	1680		1500
						<0.1
						<0.1
						34
						4
						30
						144
						230
						440
						424
						349
						140
						18
						4.6
						28.6
						0.02
						65
						50
245	218		233	221		213
						143
1.50E05	1.10E06	2.40E06	2.10E04	2.40E05	1.60E05	2.40E04
						<1

316

LC

473

LC

911

1011

Establecimiento: SAN MARTÍN

Punto: PM05

Sitio

N°Análisis

762

			Tipo
	Determinacion	Umedida	
50	рН	unidad de pH	
31	Conductividad	μS/cm	
60	Sólidos sedimentables en 10 min.	ml/l	
70	Sólidos sedimentables en 2 hs	ml/l	
80	Sólidos en suspensión totales	mg/l	
	Sólidos en suspensión fijos	mg/l	
00	Sólidos en suspensión volátiles	mg/l	
10	Cloruros (CL-)	mg/l	
20	Sulfatos (SO4=)	mg/l	
30	Alcalinidad	mg/l	
40	Dureza total	mg/l	
50	Dureza cálcica	mg/l	
50	Calcio (Ca++)	mg/l	
00	Magnesio (Mg++)	mg/l	
70	Sulfuros totales (S=)	mg/l	
00	Nitrógeno amoniacal (N-NH3)	mg/l	
10	Nitrógeno de Nitritos (N-NO2-)	mg/l	
500	D.B.O. (5 días, 20℃)	mg/l	
	D.B.O. Soluble	mg/l	
ro	D.Q.O.	mg/l	
15	D.Q.O. Soluble	mg/l	
10	Escherichia coli	NMP/100 ml	
	Huevos de Helmintos	Huevos /1000	

Matriz	LC	LC	LC
Fecha	21-01-2019	24-01-2019	28-01-2019
Hora	16:15	12:30	11:35
oo Muestra	Р	Р	Р
	Value	Valor	Valor
	7.7	8.1	7.6
	1500	2300	1660
	229	252	259
	1.50E05	2.10E05	4.30E05
	1.50E05	Z.10E03	4.50E05

Establecimiento: SAN MARTÍN Punto: SM S1

Sitio	Salida de
N°Análisis	
Matriz	LC
Fecha	16-01-2019
Hora	
Tipo Muestra	Р
	- National Control of the Control of

Determinacion Umedida

Determinacion

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES ENERO 2019

Establecimiento: SAN MARTÍN	Punto: SM S2

Umedida

de
019

Arnaldo G. Sola Jefe Area Efluentes

Determinacion

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES ENERO 2019

Establecimiento: SAN MARTÍN	Punto: SM S3

Umedida

Sitio	Salida de
N°Análisis	
Matriz	LC
Fecha	16-01-2019
Hora	
Tipo Muestra	Р
	- State

Establecimiento: SAN MARTÍN	Punto: SM S4
-----------------------------	--------------

			Sitio	Salida de
			N°Análisis	580
			Matriz	LC
			Fecha	16-01-2019
			Hora	17:15
			Tipo Muestra	Р
den	Determinacion	Umedida		Victor
50	pH	unidad de pH		7.7
	Conductividad	μS/cm		1500
	D.Q.O.	mg/l		217
	Escherichia coli	NMP/100 ml		2.90E05

Determinacion

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES ENERO 2019

Establecimiento: SAN MARTÍN	Punto: SM S5

Umedida

Sitio	Salida de
N°Análisis	
Matriz	LC
Fecha	16-01-2019
Hora	
Tipo Muestra	Р
	- Salar
	N° Análisis Matriz Fecha Hora

Establecimiento: SAN RAFAEL Pu

Punto: PM43

			Sitio	Entrada			
			N°Análisis	45	320	605	763
			Matriz	LC	LC	LC	LC
			Fecha	02-01-2019	09-01-2019	16-01-2019	21-01-2019
			Hora	11:40	11:40	12:50	12:00
			Tipo Muestra	PE	Р	Р	Р
Inden	Determinacion	Umedida	JI	- Value	Volor	Valor	Volor
3	pH	unidad de pH		7.1	7.0	6.7	7.1
3	Conductividad	μS/cm		2000	2070	2040	2150
0	Sólidos sedimentables en 10 min.	ml/l		3.0			
7	Sólidos sedimentables en 2 hs	ml/l		5.0			
٥	Sólidos en suspensión totales	mg/l		191			
9	Sólidos en suspensión fijos	mg/l		45			
100	Sólidos en suspensión volátiles	mg/l		146			
12	Sulfatos (SO4=)	mg/l		410			
130	Alcalinidad	mg/l		364			
271	Sulfuros totales (S=)	mg/l		8.0			
300	Nitrógeno amoniacal (N-NH3)	mg/l		59.4			
311	Nitrógeno de Nitritos (N-NO2-)	mg/l		<0.01			
36	D.B.O. (5 días, 20℃)	mg/l		145			
371	D.Q.O.	mg/l		436	475	558	498
540	Escherichia coli	NMP/100 ml		1.50E07	7.50E07	1.20E07	9.30E07
561	Huevos de Helmintos	Huevos /1000	ı	12	·		

606

607

508

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES ENERO 2019

199

200

321

Establecimiento: SAN RAFAEL

Punto: PM44

Sitio

N°Análisis

Salida

46

			Matriz	LC						
			Fecha	02-01-2019	07-01-2019	07-01-2019	09-01-2019	14-01-2019	16-01-2019	16-01-2019
			Hora	11:50	12:00	12:10	12:15	12:30	13:10	13:10
			Tipo Muestra	PE	Р	DU	Р	Р	Р	DU
den	Determinacion	Umedida		Ville	Volor	Malor	Malor	Malor	Vision	Moder
1	рН	unidad de pH		7.3	7.5		7.4	7.3	7.3	
3	Conductividad	μS/cm		1920	1880		2030	1970	2000	
0	Sólidos sedimentables en 10 min.	ml/l		<0.1						
	Sólidos sedimentables en 2 hs	ml/l		<0.1						
	Sólidos en suspensión totales	mg/l		67						
	Sólidos en suspensión fijos	mg/l		13						
	Sólidos en suspensión volátiles	mg/l		54						
	Cloruros (CL-)	mg/l		270						
	Sulfatos (SO4=)	mg/l		440						
	Alcalinidad	mg/l		324						
14	Dureza total	mg/l		544						
	Dureza cálcica	mg/l		449						
	Calcio (Ca++)	mg/l		180						
	Magnesio (Mg++)	mg/l		23						
	Sulfuros totales (S=)	mg/l		5.4						
	Nitrógeno amoniacal (N-NH3)	mg/l		39.2						
	Nitrógeno de Nitritos (N-NO2-)	mg/l		<0.01						
	D.B.O. (5 días, 20℃)	mg/l		41						
	D.B.O. Soluble	mg/l		12						
	D.Q.O.	mg/l		164	175		222	219	224	
	D.Q.O. Soluble	mg/l		42						
540	Escherichia coli	NMP/100 ml		9.30E04	1.10E06	2.40E06	1.50E05	4.60E04	2.40E04	2.40E04
560	Huevos de Helmintos	Huevos /1000		<1						

877

1129

Establecimiento: SAN RAFAEL P

Punto: PM44

Sitio

N°Análisis

Matriz

Fecha

764

		1 00114
		Hora
		Tipo Muestr
Determinacion	Umedida	J
рН	unidad de pH	
Conductividad	μS/cm	
Sólidos sedimentables en 10 min.	ml/l	
Sólidos sedimentables en 2 hs	ml/l	
Sólidos en suspensión totales	mg/l	
Sólidos en suspensión fijos	mg/l	
Sólidos en suspensión volátiles	mg/l	
Cloruros (CL-)	mg/l	
Sulfatos (SO4=)	mg/l	
Alcalinidad	mg/l	
Dureza total	mg/l	
Dureza cálcica	mg/l	
Calcio (Ca++)	mg/l	
Magnesio (Mg++)	mg/l	
Sulfuros totales (S=)	mg/l	
Nitrógeno amoniacal (N-NH3)	mg/l	
Nitrógeno de Nitritos (N-NO2-)	mg/l	
D.B.O. (5 días, 20℃)	mg/l	
D.B.O. Soluble	mg/l	
D.Q.O.	mg/l	
D.Q.O. Soluble	mg/l	
Escherichia coli	NMP/100 ml	

Huevos /1000

704		011	1120	
	LC	LC	LC	
	21-01-2019	23-01-2019	30-01-2019	
	12:10	12:20	12:25	
tra	Р	Р	Р	
	Value	Valor	Valor	
1	7.3	7.1	7.2	
	2030	2520	2210	
	238	227	206	
	2.10E05	1.10E05	2.40E05	

Huevos de Helmintos

Huevos de Helmintos

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES **ENERO 2019**

12

Punto: PM24 Establecimiento: TUNUYÁN

			Sitio	Entrada			
			N°Análisis	92	229	504	789
			Matriz	LC	LC	LC	LC
			Fecha	03-01-2019	08-01-2019	14-01-2019	22-01-2019
			Hora	12:55	12:50	16:40	11:05
			Tipo Muestra	Р	Р	PE	Р
den	Determinacion	Umedida	J	Vision	Valor	Valor	Valor
	pH	unidad de pH		7.2	7.3	6.8	7.3
	Conductividad	μS/cm		960	900	910	950
-	Sólidos sedimentables en 10 min.	ml/l				3.0	
	Sólidos sedimentables en 2 hs	ml/l				3.5	
- 2	Sólidos en suspensión totales	mg/l				190	
	Sólidos en suspensión fijos	mg/l				50	
10	Sólidos en suspensión volátiles	mg/l				140	
13	Sulfatos (SO4=)	mg/l				160	
12	Alcalinidad	mg/l				212	
27	Sulfuros totales (S=)	mg/l				14.9	
36	Nitrógeno amoniacal (N-NH3)	mg/l				33.6	
31	Nitrógeno de Nitritos (N-NO2-)	mg/l				<0.01	
38	D.B.O. (5 días, 20℃)	mg/l				170	
37	D.Q.O.	mg/l		465	275	456	244
53	Plaguicidas y Herbicidas	μg/l				<lm< td=""><td></td></lm<>	
53	Sustancias Fenólicas	mg/l				<0,05	
53	Hidrocarburos	mg/l				<0,5	
53	C.O.V.	μg/l				<lm< td=""><td></td></lm<>	
54	Escherichia coli	NMP/100 ml		9.30E07	2.40E07	1.50E07	7.50E07

Huevos /1000

Establecimiento: TUNUYÁN Punto: PM27

Sitio

		N°Análisis	93	230	231	391	505	632	791
		Matriz	LC	LC	LC	LC	LC	LC	LC
		Fecha	03-01-2019	08-01-2019	08-01-2019	11-01-2019	14-01-2019	17-01-2019	22-01-2019
		Hora	13:20	13:20	13:20	10:50	17:15	11:45	11:40
		Tipo Muestra	Р	Р	DU	Р	PE	Р	Р
Determinacion	Umedida		Malar	Valor	Valor	Valor	Malor	Valor	Valor
Hq	unidad de pH		7.5	7.5		7.2	7.3	7.2	7.1
Conductividad	μS/cm		960	910		1020	1020	990	1050
Sólidos sedimentables en 10 min.	ml/l						0.5		
Sólidos sedimentables en 2 hs	ml/l						0.5		
Sólidos en suspensión totales	mg/l						76		
Sólidos en suspensión fijos	mg/l						6		
Sólidos en suspensión volátiles	mg/l						70		
Cloruros (CL-)	mg/l						64		
Sulfatos (SO4=)	mg/l						250		
Alcalinidad	mg/l						220		
Dureza total	mg/l						339		
Dureza cálcica	mg/l						289		
Calcio (Ca++)	mg/l						116		
Magnesio (Mg++)	mg/l						12		
Sulfuros totales (S=)	mg/l						4.6		
Nitrógeno amoniacal (N-NH3)	mg/l						21.8		
Nitrógeno de Nitritos (N-NO2-)	mg/l						<0.01		
D.B.O. (5 días, 20℃)	mg/l						120		
D.B.O. Soluble	mg/l						12		
D.Q.O.	mg/l		182	197		162	215	180	148
D.Q.O. Soluble	mg/l						52		
Plaguicidas y Herbicidas	μg/l						<lm< td=""><td></td><td></td></lm<>		
Sustancias Fenólicas	mg/l						<0,05		
Hidrocarburos	mg/l						<0,5		
C.O.V.	μg/l						<lm< td=""><td></td><td></td></lm<>		
Escherichia coli	NMP/100 ml		2.10E05	1.20E04	1.50E04	1.10E06	1.10E05	9.30E04	2.10E05
Huevos de Helmintos	Huevos /1000						<1		

Salida general

Establecimiento: TUNUYÁN Punto: PM27

Sitio		
N°Análisis	792	908
Matriz	LC	LC
Fecha	22-01-2019	24-01-2019
Hora	11:40	11:50
Tipo Muestra	DU	Р

	Determinacion	Umedida
50	pH	unidad de pH
31	Conductividad	μS/cm
60	Sólidos sedimentables en 10 min.	ml/l
70	Sólidos sedimentables en 2 hs	ml/l
80	Sólidos en suspensión totales	mg/l
90	Sólidos en suspensión fijos	mg/l
100	Sólidos en suspensión volátiles	mg/l
	Cloruros (CL-)	mg/l
	Sulfatos (SO4=)	mg/l
130	Alcalinidad	mg/l
	Dureza total	mg/l
	Dureza cálcica	mg/l
	Calcio (Ca++)	mg/l
200	Magnesio (Mg++)	mg/l
	Sulfuros totales (S=)	mg/l
	Nitrógeno amoniacal (N-NH3)	mg/l
	Nitrógeno de Nitritos (N-NO2-)	mg/l
	D.B.O. (5 días, 20℃)	mg/l
365	D.B.O. Soluble	mg/l
	D.Q.O.	mg/l
	D.Q.O. Soluble	mg/l
	Plaguicidas y Herbicidas	μg/l
536	Sustancias Fenólicas	mg/l
538	Hidrocarburos	mg/l
530	C.O.V.	μg/l
540	Escherichia coli	NMP/100 ml
560	Huevos de Helmintos	Huevos /1000

	8.1
	3460
	117
4.60E05	2.40E04

Determinacion

Conductividad

Escherichia coli

рΗ

D.Q.O.

DEPARTAMENTO LABORATORIO INFORME MENSUAL DE ANALISIS DE ESTABLECIMIENTOS DEPURADORES **ENERO 2019**

Punto: TU AC Establecimiento: TUNUYÁN

	Sitio	Salida general antes de clorar					
	N°Análisis	392	506	633	793		
	Matriz	LC	LC	LC	LC		
	Fecha	11-01-2019	14-01-2019	17-01-2019	22-01-2019		
	Hora	10:45	17:20	11:50	11:30		
	Tipo Muestra	Р	Р	Р	Р		
		Valor	Valor	Valor	Valor		
Umedida							
unidad de pH		7.3	7.6	7.2	7.2		
μS/cm		940	920	900	930		
mg/l		176	196	190	164		
NMP/100 ml			2.40E05	2.40E07			

Establecimiento: USPALLATA Punto: PM33

Sitio	Entrada	
N°Análisis	306	1043
Matriz	LC	LC
Fecha	09-01-2019	28-01-2019
Hora	16:10	09:30
Tipo Muestra	Р	PE
Tipo Macolia		- 1 _

den	Determinacion	Umedida
50	рН	unidad de pH
	Conductividad	μS/cm
60	Sólidos sedimentables en 10 min.	ml/l
70	Sólidos sedimentables en 2 hs	ml/l
80	Sólidos en suspensión totales	mg/l
	Sólidos en suspensión fijos	mg/l
100	Sólidos en suspensión volátiles	mg/l
120	Sulfatos (SO4=)	mg/l
	Alcalinidad	mg/l
270	Sulfuros totales (S=)	mg/l
300	Nitrógeno amoniacal (N-NH3)	mg/l
	Nitrógeno de Nitritos (N-NO2-)	mg/l
	Nitrógeno de Nitratos (N-NO3-)	mg/l
350	D.B.O. (5 días, 20℃)	mg/l
370	D.Q.O.	mg/l
	Fósforo total (PO4-3)	mg/l
540	Escherichia coli	NMP/100 ml
560	Huevos de Helmintos	Huevos /1000

No. and Control of the Control of th	Name
7.3	7.2
630	590
	0.5
	2.0
	72
	12
	60
	58
	180
	1.0
	27.4
	<0.01
	0.2
	71
268	160
	22.6
4.60E07	2.40E07
	17

Establecimiento: USPALLATA Punto: PM41

Salida (cámara. Serie		
307	1044	
LC	LC	
09-01-2019	28-01-2019	
16:30	09:45	
Р	PE	
	307 LC 09-01-2019	

in	Determinacion	Umedida			
50	рН	unidad de pH			
31	Conductividad	μS/cm			
60	Sólidos sedimentables en 10 min.	ml/l			
70	Sólidos sedimentables en 2 hs	ml/l			
80	Sólidos en suspensión totales	mg/l			
90	Sólidos en suspensión fijos	mg/l			
100	Sólidos en suspensión volátiles	mg/l			
110	Cloruros (CL-)	mg/l			
120	Sulfatos (SO4=)	mg/l			
130	Alcalinidad	mg/l			
140	Dureza total	mg/l			
150	Dureza cálcica	mg/l			
180	Calcio (Ca++)	mg/l			
200	Magnesio (Mg++)	mg/l			
270	Sulfuros totales (S=)	mg/l			
300	Nitrógeno amoniacal (N-NH3)	mg/l			
310	Nitrógeno de Nitritos (N-NO2-)	mg/l			
330	Nitrógeno de Nitratos (N-NO3-)	mg/l			
360	D.B.O. (5 días, 20℃)	mg/l			
365	D.B.O. Soluble	mg/l			
	D.Q.O.	mg/l			
415	D.Q.O. Soluble	mg/l			
420	Fósforo total (PO4-3)	mg/l			
540	Escherichia coli	NMP/100 ml			
550	Huevos de Helmintos	Huevos /1000			

•	' -
7.3	8.2
540	540
	<0.1
	<0.1
	950
	200
	750
	31
	64
	148
	175
	125
	50
	12
	1.0
	7.8
	<0.01
	0.4
	94
	8
132	165
	51
	17.6
9.30E03	2.90E04
	<1

532

682

876

Establecimiento: VILLA TULUMAYA

Punto: PM18

N°Análisis

Matriz Fecha Hora **Entrada**

192

12

			Hora
			Tipo Muestra
in	Determinacion	Umedida	
	рН	unidad de pH	
31	Conductividad	μS/cm	
60	Sólidos sedimentables en 10 min.	ml/l	
70	Sólidos sedimentables en 2 hs	ml/l	
	Sólidos en suspensión totales	mg/l	
	Sólidos en suspensión fijos	mg/l	
100	Sólidos en suspensión volátiles	mg/l	
110	Cloruros (CL-)	mg/l	
130	Alcalinidad	mg/l	
140	Dureza total	mg/l	
160	Dureza cálcica	mg/l	
180	Calcio (Ca++)	mg/l	
200	Magnesio (Mg++)	mg/l	
270	Sulfuros totales (S=)	mg/l	
300	Nitrógeno amoniacal (N-NH3)	mg/l	
310	Nitrógeno de Nitritos (N-NO2-)	mg/l	
380	D.B.O. (5 días, 20℃)	mg/l	
365	D.B.O. Soluble	mg/l	
370	D.Q.O.	mg/l	
415	D.Q.O. Soluble	mg/l	
540	Escherichia coli	NMP/100 ml	
	Huevos de Helmintos	Huevos /1000	

	102	002	002	0.0
	LC	LC	LC	LC
	07-01-2019	15-01-2019	18-01-2019	23-01-2019
	17:25	10:40	11:00	16:20
ra	PE	Р	Р	Р
	Voles	Valor	Malor	Volce
	7.4	7.3	7.1	7.1
	1360	1330	1370	1940
	1.4			
	2.0			
	119			
	25			
	94			
	23			
	400			
	284			
	205			
	82			
	19			
	44.2			
	55.4			
	0.45			
	187			
	110			
	520	328	364	457
	282			
	2.90E07	4.60E07	1.20E07	1.10E08